
Traffic Control Documentation
Release 1.1.3

Comcast Cable

Jun 18, 2018

Contents

1 CDN Basics 3
1.1 CDN Basics . 3

2 Traffic Control Overview 11
2.1 Traffic Control Overview . 11

3 Administrator’s Guide 21
3.1 Administrator’s Guide . 21

4 Developer’s Guide 59
4.1 Developer’s Guide . 59

5 FAQ 149
5.1 FAQ . 149

6 Indices and Tables 151
6.1 Glossary . 151

i

ii

Traffic Control Documentation, Release 1.1.3

The vast majority of today’s Internet traffic is media files being sent from a single source to many thousands or even
millions of destinations. Content Delivery Networks make that one-to-many distribution possible in an economical
way.

Traffic Control is an Open Source implementation of a Content Delivery Network.

The following documentation sections are available:

Contents 1

Traffic Control Documentation, Release 1.1.3

2 Contents

CHAPTER 1

CDN Basics

A review of the basic functionality of a Content Delivery Network.

1.1 CDN Basics

Traffic Control is a CDN control plane, see the topics below to familiarize yourself with the basic concepts of a CDN.

1.1.1 Content Delivery Networks

The vast majority of today’s Internet traffic is media files (often video or audio) being sent from a single source (the
Content Provider) to many thousands or even millions of destinations (the Content Consumers). Content Delivery
Networks are the technology that make that one-to-many distribution possible in an economical way. A Content De-
livery Network (CDN) is a distributed system of servers for delivering content over HTTP. These servers are deployed
in multiple locations with the goal of optimizing the delivery of content to the end users, while minimizing the traffic
on the network. A CDN typically consists of the following:

• Caching Proxies The proxy (cache or caching proxy) is a server that both proxies the requests and caches the
results for reusing.

• Content Router The Content Router ensures that the end user is connected to the optimal cache for the location
of the end user and content availability.

• Health Protocol The Health Protocol monitors the usage of the caches and tenants in the CDN.

• Configuration Management System In many cases a CDN encompasses hundreds of servers across a large
geographic area. The Configuration Management System allows an operator to manage these servers.

• Log File Analysis System Every transaction in the CDN gets logged. The Log File Analysis System aggregates
all of the log entries from all of the servers to a central location for analysis and troubleshooting.

3

Traffic Control Documentation, Release 1.1.3

1.1.2 HTTP 1.1

For a comprehensive look at Traffic Control, it is important to understand basic HTTP 1.1 protocol operations and how
caches function. The example below illustrates the fulfillment of an HTTP 1.1 request in a situation without CDN or
proxy, followed by viewing the changes after inserting different types of (caching) proxies. Several of the examples
below are simplified for clarification of the essentials.

For complete details on HTTP 1.1 see RFC 2616 - Hypertext Transfer Protocol – HTTP/1.1.

Below are the steps of a client retrieving the URL http://www.origin.com/foo/bar/fun.html using
HTTP/1.1 without proxies:

1. The client sends a request to the Local DNS (LDNS) server to resolve the name www.origin.com to an IPv4
address.

2. If the LDNS does not have this name (IPv4 mapping cached), it sends DNS requests to the ., .com, and .ori-
gin.com authoritative servers until it receives a response with the address for www.origin.com. Per the DNS
SPEC, this response has a Time To Live (TTL), which indicates how long this mapping can be cached at the
LDNS server. In the example, the IP address found by the LDNS server for www.origin.com is 44.33.22.11.

Note: While longer DNS TTLs of a day (86400 seconds) or more are quite common in other use cases,
in CDN use cases DNS TTLs are often below a minute.

3. The client opens a TCP connection from a random port locally to port 80 (the HTTP default) on 44.33.22.11,
and sends this (showing the minimum HTTP 1.1 request, typically there are additional headers):

GET /foo/bar/fun.html HTTP/1.1
Host: www.origin.com

4. The server at www.origin.com looks up the Host: header to match that to a configuration section, usu-
ally referred to as a virtual host section. If the Host: header and configuration section match, the search
continues for the content of the path /foo/bar/fun.html, in the example, this is a file that contains
<html><body>This is a fun file</body></html>, so the server responds with the following:

HTTP/1.1 200 OK
Content-Type: text/html; charset=UTF-8
Content-Length: 45

<html><body>This is a fun file</body></html>

At this point, HTTP transaction is complete.

1.1.3 Caching Proxies

The main function of a CDN is to proxy requests from clients to origin servers and cache the results. To proxy, in the
CDN context, is to obtain content using HTTP from an origin server on behalf of a client. To cache is to store the
results so they can be reused when other clients are requesting the same content. There are three types of proxies in
use on the Internet today which are described below.

Reverse Proxy

A reverse proxy acts on behalf of the origin server. The client is mostly unaware it is communicating with
a proxy and not the actual origin. All EDGE caches in a Traffic Control CDN are reverse proxies. To
the end user a Traffic Control based CDN appears as a reverse proxy since it retrieves content from the

4 Chapter 1. CDN Basics

https://www.ietf.org/rfc/rfc2616.txt

Traffic Control Documentation, Release 1.1.3

origin server, acting on behalf of that origin server. The client requests a URL that has a hostname which
resolves to the reverse proxy’s IP address and, in compliance with the HTTP 1.1 specification, the client
sends a Host: header to the reverse proxy including the hostname in the URL. The proxy looks up the
hostname in a list of mappings to find the origin hostname; if the origin hostname is not found in the list,
the proxy connects to the origin host and requests the path of the original URL. The proxy then stores
the URL in cache and serves the contents to the client. When there are subsequent requests for the same
URL, a caching proxy serves the content out of cache thereby reducing latency and network traffic.

See also:

ATS documentation on reverse proxy.

To insert a reverse proxy into the previous HTTP 1.1 example, the reverse proxy requires provisioning for www.
origin.com. By adding a remap rule to the cache, the reverse proxy then maps requests to this origin. The
content owner must inform the clients, by updating the URL, to receive the content from the cache and not from the
origin server directly. For this example, the remap rule on the cache is: http://www-origin-cache.cdn.com
http://www.origin.com.

Note: In the previous example minimal headers were shown on both the request and response. In the examples that
follow, the origin server response is more realistic.

HTTP/1.1 200 OK
Date: Sun, 14 Dec 2014 23:22:44 GMT
Server: Apache/2.2.15 (Red Hat)
Last-Modified: Sun, 14 Dec 2014 23:18:51 GMT
ETag: "1aa008f-2d-50a3559482cc0"
Content-Length: 45
Connection: close
Content-Type: text/html; charset=UTF-8

<html><body>This is a fun file</body></html>

The client is given the URL http://www-origin-cache.cdn.com/foo/bar/fun.html (note the differ-
ent hostname) and when attempting to obtain that URL, the following occurs:

1. The client sends a request to the LDNS server to resolve the name www-origin-cache.cdn.com to an
IPv4 address.

2. Similar to the previous case, the LDNS server resolves the name www-origin-cache.cdn.com to an IPv4
address, in this example, this address is 55.44.33.22.

3. The client opens a TCP connection from a random port locally, to port 80 (the HTTP default) on 55.44.33.22,
and sends the following:

GET /foo/bar/fun.html HTTP/1.1
Host: www-origin-cache.cdn.com

4. The reverse proxy looks up www-origin-cache.cdn.com in its remap rules, and finds the origin is www.
origin.com.

5. The proxy checks its cache to see if the response for http://www-origin-cache.cdn.com/foo/bar/
fun.html is already in the cache.

6a. If the response is not in the cache:

1. The proxy uses DNS to get the IPv4 address for www.origin.com, connect to it on port 80, and sends:

1.1. CDN Basics 5

https://docs.trafficserver.apache.org/en/latest/admin/reverse-proxy-http-redirects.en.html#http-reverse-proxy

Traffic Control Documentation, Release 1.1.3

GET /foo/bar/fun.html HTTP/1.1
Host: www.origin.com

2. The origin server responds with the headers and content as shown:

HTTP/1.1 200 OK
Date: Sun, 14 Dec 2014 23:22:44 GMT
Server: Apache/2.2.15 (Red Hat)
Last-Modified: Sun, 14 Dec 2014 23:18:51 GMT
ETag: "1aa008f-2d-50a3559482cc0"
Content-Length: 45
Connection: close
Content-Type: text/html; charset=UTF-8

<html><body>This is a fun file</body></html>

3. The proxy sends the origin response on to the client adding a Via: header (and maybe others):

HTTP/1.1 200 OK
Date: Sun, 14 Dec 2014 23:22:44 GMT
Last-Modified: Sun, 14 Dec 2014 23:18:51 GMT
ETag: "1aa008f-2d-50a3559482cc0"
Content-Length: 45
Connection: close
Content-Type: text/html; charset=UTF-8
Age: 0
Via: http/1.1 cache01.cdn.kabletown.net (ApacheTrafficServer/4.2.1
→˓[uScSsSfUpSeN:t cCSi p sS])
Server: ATS/4.2.1

<html><body>This is a fun file</body></html>

6b. If it is in the cache:

The proxy responds to the client with the previously retrieved result:

HTTP/1.1 200 OK
Date: Sun, 14 Dec 2014 23:22:44 GMT
Last-Modified: Sun, 14 Dec 2014 23:18:51 GMT
ETag: "1aa008f-2d-50a3559482cc0"
Content-Length: 45
Connection: close
Content-Type: text/html; charset=UTF-8
Age: 39711
Via: http/1.1 cache01.cdn.kabletown.net (ApacheTrafficServer/4.2.1
→˓[uScSsSfUpSeN:t cCSi p sS])
Server: ATS/4.2.1

<html><body>This is a fun file</body></html>

Forward Proxy

A forward proxy acts on behalf of the client. The origin server is mostly unaware of the proxy, the client
requests the proxy to retrieve content from a particular origin server. All MID caches in a Traffic Control
based CDN are forward proxies. In a forward proxy scenario, the client configuration is with the proxy’s

6 Chapter 1. CDN Basics

Traffic Control Documentation, Release 1.1.3

IP address and port. The client always connects to the forward proxy for content. The content provider
does not have to change the URL the client obtains, and is unaware of the proxy in the middle.

See also:

ATS documentation on forward proxy.

Below is an example of the client retrieving the URL http://www.origin.com/foo/bar/fun.html through
a forward proxy:

1. The client requires configuration to use the proxy, as opposed to the reverse proxy example. Assume the client
configuration is through preferences entries or other to use the proxy IP address 99.88.77.66 and proxy port
8080.

2. To retrieve http://www.origin.com/foo/bar/fun.htmlURL, the client connects to 99.88.77.66 on
port 8080 and sends:

GET http://www.origin.com/foo/bar/fun.html HTTP/1.1

Note: In this case, the client places the entire URL after GET, including protocol and hostname (http:/
/www.origin.com), but in the reverse proxy and direct-to-origin case it puts only the path portion of
the URL (/foo/bar/fun.html) after the GET.

3. The proxy verifies whether the response for http://www-origin-cache.cdn.com/foo/bar/fun.
html is already in the cache.

4a. If it is not in the cache:

1. The proxy uses DNS to obtain the IPv4 address for www.origin.com, connects to it on port 80, and sends:

GET /foo/bar/fun.html HTTP/1.1
Host: www.origin.com

2. The origin server responds with the headers and content as shown below:

HTTP/1.1 200 OK
Date: Sun, 14 Dec 2014 23:22:44 GMT
Server: Apache/2.2.15 (Red Hat)
Last-Modified: Sun, 14 Dec 2014 23:18:51 GMT
ETag: "1aa008f-2d-50a3559482cc0"
Content-Length: 45
Connection: close
Content-Type: text/html; charset=UTF-8

<html><body>This is a fun file</body></html>

3. The proxy sends this on to the client adding a Via: header (and maybe others):

HTTP/1.1 200 OK
Date: Sun, 14 Dec 2014 23:22:44 GMT
Last-Modified: Sun, 14 Dec 2014 23:18:51 GMT
ETag: "1aa008f-2d-50a3559482cc0"
Content-Length: 45
Connection: close
Content-Type: text/html; charset=UTF-8
Age: 0
Via: http/1.1 cache01.cdn.kabletown.net (ApacheTrafficServer/4.2.1
→˓[uScSsSfUpSeN:t cCSi p sS])

(continues on next page)

1.1. CDN Basics 7

https://docs.trafficserver.apache.org/en/latest/admin/forward-proxy.en.html

Traffic Control Documentation, Release 1.1.3

(continued from previous page)

Server: ATS/4.2.1

<html><body>This is a fun file</body></html>

4b. If it is in the cache:

The proxy responds to the client with the previously retrieved result:

HTTP/1.1 200 OK
Date: Sun, 14 Dec 2014 23:22:44 GMT
Last-Modified: Sun, 14 Dec 2014 23:18:51 GMT
ETag: "1aa008f-2d-50a3559482cc0"
Content-Length: 45
Connection: close
Content-Type: text/html; charset=UTF-8
Age: 99711
Via: http/1.1 cache01.cdn.kabletown.net (ApacheTrafficServer/4.2.1
→˓[uScSsSfUpSeN:t cCSi p sS])
Server: ATS/4.2.1

<html><body>This is a fun file</body></html>

Transparent Proxy

Neither the origin nor the client are aware of the actions performed by the transparent proxies. A Traffic
Control based CDN does not use transparent proxies. If you are interested you can learn more about
transparent proxies on wikipedia.

1.1.4 Cache Control Headers and Revalidation

The HTTP/1.1 spec allows for origin servers and clients to influence how caches treat their requests and responses.
By default, the Traffic Control CDN will honor cache control headers. Most commonly, origin servers will tell the
downstream caches how long a response can be cached:

HTTP/1.1 200 OK
Date: Sun, 14 Dec 2014 23:22:44 GMT
Server: Apache/2.2.15 (Red Hat)
Last-Modified: Sun, 14 Dec 2014 23:18:51 GMT
ETag: "1aa008f-2d-50a3559482cc0"
Cache-Control: max-age=86400
Content-Length: 45
Connection: close
Content-Type: text/html; charset=UTF-8

<html><body>This is a fun file</body></html>

In the above response, the origin server tells downstream caching systems that the maximum time to cache this re-
sponse for is 86400 seconds. The origin can also add a Expires: header, explicitly telling the cache the time this
response is to be expired. When a response is expired it usually doesn’t get deleted from the cache, but, when a request
comes in that would have hit on this response if it was not expired, the cache revalidates the response. In stead of
requesting the object again from the origin server, the cache will send a request to the origin indicating what version of
the response it has, and asking if it has changed. If it changed, the server will send a 200 OK response, with the new
data. If it has not changed, the origin server will send back a 304 Not Modified response indicating the response

8 Chapter 1. CDN Basics

http://en.wikipedia.org/wiki/Proxy_server#Transparent_proxy
https://www.ietf.org/rfc/rfc2616.txt

Traffic Control Documentation, Release 1.1.3

is still valid, and that the cache can reset the timer on the response expiration. To indicate what version the client
(cache) has it will add an If-Not-Modified-Since: header, or an If-None-Match: header. For example,
in the If-None-Match: case, the origin will send and ETag header that uniquely identifies the response. The
client can use that in an revalidation request like:

GET /foo/bar/fun.html HTTP/1.1
If-None-Match: "1aa008f-2d-50a3559482cc0"
Host: www.origin.com

If the content has changed (meaning, the new response would not have had the same ETag) it will respond with 200
OK, like:

HTTP/1.1 200 OK
Date: Sun, 18 Dec 2014 3:22:44 GMT
Server: Apache/2.2.15 (Red Hat)
Last-Modified: Sun, 14 Dec 2014 23:18:51 GMT
ETag: "1aa008f-2d-50aa00feadd"
Cache-Control: max-age=604800
Content-Length: 49
Connection: close
Content-Type: text/html; charset=UTF-8

<html><body>This is NOT a fun file</body></html>

If the Content did not change (meaning, the response would have had the same ETag) it will respond with 304 Not
Modified, like:

304 Not Modified
Date: Sun, 18 Dec 2014 3:22:44 GMT
Server: Apache/2.2.15 (Red Hat)
Last-Modified: Sun, 14 Dec 2014 23:18:51 GMT
ETag: "1aa008f-2d-50a3559482cc0"
Cache-Control: max-age=604800
Content-Length: 45
Connection: close
Content-Type: text/html; charset=UTF-8

Note that the 304 response only has headers, not the data.

1.1. CDN Basics 9

Traffic Control Documentation, Release 1.1.3

10 Chapter 1. CDN Basics

CHAPTER 2

Traffic Control Overview

An introduction to the Traffic Control architecture, components, and their integration.

2.1 Traffic Control Overview

Introduces the Traffic Control architecture, components, and their integration.

2.1.1 Introduction

Traffic Control is a control plane for a CDN, which includes all of the components mentioned in the CDN Basics
section, except for the Log File Analysis System. The caching software chosen for Traffic Control is Apache Traffic
Server (ATS). Although the current release only supports ATS as a cache, this may change with future releases.

Traffic Control was first developed at Comcast for internal use and released to Open Source in April of 2015.

Traffic Control implements the blue boxes in the architecture diagram below.

11

http://trafficserver.apache.org/
http://trafficserver.apache.org/

Traffic Control Documentation, Release 1.1.3

In the next sections each of these components will be explained further.

2.1.2 Traffic Ops

Traffic Ops is the tool for administration (configuration and monitoring) of all components in a Traffic Control CDN.
The CDN administrator uses Traffic Ops to manage servers, cache groups, delivery services, etc. In many cases,
a configuration change requires propagation to several, or even all, caches and only explicitly after or before the
same change propagates to Traffic Router. Traffic Ops takes care of this required consistency between the different
components and their configuration. Traffic Ops exposes its data through a series of HTTP APIs and has a user
interface that is interactive and viewable using a standard web browser.

Traffic Ops uses a MySQL or PostgreSQL database to store the configuration information, and the Mojolicious frame-
work to generate the user interface and APIs. Not all configuration data is in this database however; for sensitive data,
like SSL private keys or token based authentication shared secrets, a separate key-value store is used, allowing the
operator to harden the server that runs this key-value store better from a security perspective (i.e only allow Traffic
Ops access it with a cert). The Traffic Ops server, by design, needs to be accessible from all the other servers in the
Traffic Control CDN.

Traffic Ops generates all the application specific configuration files for the caches and other servers. The caches and
other servers check in with Traffic Ops at a regular interval (default 15 minutes) to see if updated configuration files
require application.

Traffic Ops also runs a collection of periodic checks to determine the operational readiness of the caches. These
periodic checks are customizable by the Traffic Ops admin using extensions.

12 Chapter 2. Traffic Control Overview

http://mojolicio.us/
http://mojolicio.us/

Traffic Control Documentation, Release 1.1.3

Traffic Ops Extension

Traffic Ops Extensions are a way to enhance the basic functionality of Traffic Ops in a custom manner.
There are three types of extensions:

• Check Extensions - Allows you to add custom checks to the “Health->Server Checks” view.

• Configuration Extension - Allows you to add custom configuration file generators.

• Data source Extensions - Allows you to add data sources for the graph views and usage APIs.

2.1.3 Traffic Router

Traffic Router’s function is to send clients to the most optimal cache. Optimal in this case is based on a number of
factors:

• Distance between the cache and the client (not necessarily measured in meters, but quite often in layer 3 network
hops). Less network distance between the client and cache yields better performance, and lower network load.
Traffic Router helps clients connect to the best performing cache for their location at the lowest network cost.

• Availability of caches and health / load on the caches. A common issue in Internet and television distribution
scenarios is having many clients attempting to retrieve the same content at the same time. Traffic Router helps
clients route around overloaded or down caches.

• Availability of content on a particular cache. Reusing of content through cache HITs is the most important
performance gain a CDN can offer. Traffic Router sends clients to the cache that is most likely to already have
the desired content.

Traffic routing options are often configured at the Delivery Service level.

Delivery Service

As discussed in the basic concepts section, the EDGE caches are configured as reverse proxies, and the
Traffic Control CDN looks from the outside as a very large reverse proxy. Delivery Services are often
referred to a reverse proxy remap rule. In most cases, a Delivery Service is a one to one mapping to a
FQDN that is used as a hostname to deliver the content. Many options and settings regarding how to
optimize the content delivery, which is configurable on a Delivery Service basis. Some examples of these
Delivery Service settings are:

• Cache in RAM, cache on disk, or do not cache at all.

• Use DNS or HTTP Content routing (see below).

• Limits on transactions per second and bandwidth.

• Protocol (http or https).

• Token based authentication settings.

• Header rewrite rules.

Delivery Services are also for use in allowing multi-tenants to coexist in the Traffic Control CDN without
interfering with each other, and to keep information about their content separated.

2.1. Traffic Control Overview 13

Traffic Control Documentation, Release 1.1.3

Localization

Traffic Router uses a JSON input file called the coverage zone map to determine what cachegroup is
closest to the client. If the client IP address is not in this coverage zone map, it falls back to geo, using
the maxmind database to find the client’s location, and the geo coordinates from Traffic Ops for the
cachegroup.

Traffic Router is inserted into the HTTP retrieval process by making it DNS authoritative for the domain of the CDN
delivery service. In the example of the reverse proxy, the client was given the http://www-origin-cache.
cdn.com/foo/bar/fun.html url. In a Traffic Control CDN, URLs start with either tr. or edge., for
HTTP or DNS content routing respectively. These names are configurable via properties files within the Traffic Router
installation.

DNS Content Routing

For a DNS delivery service the client receives a URL with a hostname beginning with edge. (e.g. http:
//edge.dsname.cdn.com/foo/bar/fun.html). When the LDNS server is resolving this edge.dsname.
cdn.com hostname to an IP address, it ends at Traffic Router because it is the authoritative DNS server
for cdn.com and the domains below it, and subsequently responds with a list of IP addresses from the
eligible caches based on the location of the LDNS server. When responding, Traffic Router does not
know the actual client IP address or the path that the client is going to request. The decision on what
cache IP address (or list of cache IP addresses) to return is solely based on the location of the LDNS
server and the health of the caches. The client then connects to port 80 on the cache, and sends the
Host: edge.dsname.cdn.com header. The configuration of the cache includes the remap rule
http://edge.dsname.cdn.com http://origin.dsname.com to map that edge name to an
origin hostname.

HTTP Content Routing

For an HTTP delivery service the client receives a URL with a hostname beginning with tr. (e.g. http:
//tr.dsname.cdn.com/foo/bar/fun.html), the LDNS server resolves this tr.dsname.cdn.com to an IP
address, but in this case Traffic Router returns its own IP address. The client opens a connection to port
80 on the Traffic Router’s IP address, and sends:

GET /foo/bar/fun.html HTTP/1.1
Host: tr.dsname.cdn.com

14 Chapter 2. Traffic Control Overview

http://edge.dsname.cdn.com/foo/bar/fun.html
http://edge.dsname.cdn.com/foo/bar/fun.html
http://tr.dsname.cdn.com/foo/bar/fun.html
http://tr.dsname.cdn.com/foo/bar/fun.html

Traffic Control Documentation, Release 1.1.3

Traffic Router uses an HTTP 302 to redirect the client to the best cache. For example:

HTTP/1.1 302 Moved Temporarily
Server: Apache-Coyote/1.1
Location: http://atsec-nyc-02.dsname.cdn.com/foo/bar/fun.html
Content-Length: 0
Date: Tue, 13 Jan 2015 20:01:41 GMT

The information Traffic Router can consider when selecting a cache in this case is much better:

• The client’s IP address (the other side of the socket).

• The URL path the client is requesting.

• All HTTP 1.1 headers.

The client follows the redirect and performs a DNS request for the IP address for atsec-nyc-02.
dsname.cdn.com, and normal HTTP steps follow, except the sending of the Host: header when con-
nected to the cache is Host: atsec-nyc-02.dsname.cdn, and the configuration of the cache
includes the remap rule (e.g.‘‘http://atsec-nyc-02.dsname.cdn http://origin.dsname.com‘‘).

Traffic Router sends all requests for the same path in a delivery service to the same cache in a cache group
using consistent hashing, in this case all caches in a cache group are not carrying the same content, and
there is a much larger combined cache in the cache group.

In many cases DNS content routing is the best possible option, especially in cases where the client is receiving small
objects from the CDN like images and web pages.

Traffic Router is redundant and horizontally scalable by adding more instances into the DNS hierarchy using NS
records.

2.1.4 Traffic Monitor

Traffic Monitor is a Java/Tomcat application that monitors the caches in a CDN for a variety of metrics. These metrics
are for use in determining the overall health of a given cache and the related delivery services. A given CDN can
operate a number of Traffic Monitors, from a number of geographically diverse locations, to prevent false positives
caused by network problems at a given site.

Traffic Monitors operate independently, but use the state of other Traffic Monitors in conjunction with their own state,
to provide a consistent view of CDN cache health to upstream applications such as Traffic Router. Health Protocol
governs the cache and Delivery Service availability.

Traffic Monitor provides a view into CDN health using several RESTful JSON endpoints, which are consumed by other
Traffic Monitors and upstream components such as Traffic Router. Traffic Monitor is also responsible for serving the
overall CDN configuration to Traffic Router, which ensures that the configuration of these two critical components
remain synchronized as operational and health related changes propagate through the CDN.

Cache Monitoring

Traffic Monitor polls all caches configured with a status of REPORTED or ADMIN_DOWN at an interval
specified as a configuration parameter in Traffic Ops. If the cache is set to ADMIN_DOWN it is marked
as unavailable but still polled for availability and statistics. If the cache is explicitly configured with a
status of ONLINE or OFFLINE, it is not polled by Traffic Monitor and presented to Traffic Router as
configured, regardless of actual availability.

Traffic Monitor makes HTTP requests at regular intervals to a special URL on each EDGE cache and
consumes the JSON output. The special URL is a plugin running on the Apache Traffic Server (ATS)

2.1. Traffic Control Overview 15

http://origin.dsname

Traffic Control Documentation, Release 1.1.3

caches called astats, which is restricted to Traffic Monitor only. The astats plugin provides insight into
application and system performance, such as:

• Throughput (e.g. bytes in, bytes out, etc).

• Transactions (e.g. number of 2xx, 3xx, 4xx responses, etc).

• Connections (e.g. from clients, to parents, origins, etc).

• Cache performance (e.g.: hits, misses, refreshes, etc).

• Storage performance (e.g.: writes, reads, frags, directories, etc).

• System performance (e.g: load average, network interface throughput, etc).

Many of the application level statistics are available at the global or aggregate level, some at the Delivery
Service (remap rule) level. Traffic Monitor uses the system level performance to determine the overall
health of the cache by evaluating network throughput and load against values configured in Traffic Ops.
Traffic Monitor also uses throughput and transaction statistics at the remap rule level to determine Delivery
Service health.

If astats is unavailable due to a network related issue or the system statistics have exceeded the configured thresholds,
Traffic Monitor will mark the cache as unavailable. If the delivery service statistics exceed the configured thresholds,
the delivery service is marked as unavailable, and Traffic Router will start sending clients to the overflow destinations
for that delivery service, but the cache remains available to serve other content,

See also:

For more information on ATS Statistics, see the ATS documentation

Health Protocol

Redundant Traffic Monitor servers operate independently from each other but take the state of other
Traffic Monitors into account when asked for health state information. In the above overview of cache
monitoring, the behavior of Traffic Monitor pertains only to how an individual instance detects and han-
dles failures. The Health Protocol adds another dimension to the health state of the CDN by merging
the states of all Traffic Monitors into one, and then taking the optimistic approach when dealing with a
cache or Delivery Service that might have been marked as unavailable by this particular instance or a peer
instance of Traffic Monitor.

Upon startup or configuration change in Traffic Ops, in addition to caches, Traffic Monitor begins polling
its peer Traffic Monitors whose state is set to ONLINE. Each ONLINE Traffic Monitor polls all of its peers
at a configurable interval and saves the peer’s state for later use. When polling its peers, Traffic Monitor
asks for the raw health state from each respective peer, which is strictly that instance’s view of the CDN’s
health. When any ONLINE Traffic Monitor is asked for CDN health by an upstream component, such as
Traffic Router, the component gets the health protocol influenced version of CDN health (non-raw view).

In operation of the health protocol, Traffic Monitor takes all health states from all peers, including the
locally known health state, and serves an optimistic outlook to the requesting client. This means that,
for example, if three of the four Traffic Monitors see a given cache or Delivery Service as exceeding
its thresholds and unavailable, it is still considered available. Only if all Traffic Monitors agree that the
given object is unavailable is that state propagated to upstream components. This optimistic approach
to the Health Protocol is counter to the “fail fast” philosophy, but serves well for large networks with
complicated geography and or routing. The optimistic Health Protocol allows network failures or latency
to occur without affecting overall traffic routing, as Traffic Monitors can and do have a different view of
the network when deployed in geographically diverse locations. Short polling intervals of both the caches
and Traffic Monitor peers help to reduce customer impact of outages.

16 Chapter 2. Traffic Control Overview

https://docs.trafficserver.apache.org/en/latest/index.html

Traffic Control Documentation, Release 1.1.3

It is not uncommon for a cache to be marked unavailable by Traffic Monitor - in fact, it is business as usual for many
CDNs. A hot video asset may cause a single cache (say cache-03) to get close to it’s interface capacity, the health
protocol “kicks in”, and Traffic Monitor marks cache-03 as unavailable. New clients want to see the same asset, and
now, Traffic Router will send these customers to another cache (say cache-01) in the same cachegroup. The load is
now shared between cache-01 and cache-03. As clients finish watching the asset on cache-03, it will drop below the
threshold and gets marked available again, and new clients will now go back to cache-03 again.

It is less common for a delivery service to be marked unavailable by Traffic Monitor, the delivery service thresholds
are usually used for overflow situations at extreme peaks to protect other delivery services in the CDN from getting
impacted.

2.1.5 Traffic Stats

Traffic Stats is a utility written in Go that mines metrics from Traffic Monitor’s JSON APIs and stores the data locally
in Redis for a short period of time. This data is inherently transient, rolls frequently, and is volatile due to the default
in-memory nature of Redis. The transient nature of the data is acceptable, as this system’s purpose is to land data in
Redis for other tools to consume.

Once in Redis, the data can be extracted and prepared to be sent elsewhere for long term storage. Any number of
Traffic Stats instances may run on a given CDN to collect metrics from Traffic Monitor, however, redundancy and
integration with a long term metrics storage system is implementation dependent. Traffic Stats does not influence
overall CDN operation, but is required in order to display charts in Traffic Operations.

2.1.6 Traffic Portal

Traffic Portal is a user interface for CDN tenants to view performance, and in most cases, change settings of their
delivery services. Traffic Portal is an Angular JS application written against the Traffic Ops APIs.

Note: The Traffic Portal is not being released to Open Source in the initial release.

2.1.7 Traffic Server

The caches in a Traffic Control CDN are servers running the Apache Traffic Server software. See ATS documentation
for more information. Caches in a Traffic Control CDN are deployed in cache groups.

Cache Group

A cache group is a logical group of caches that Traffic Router tries to use as a combined cache. Traffic
Router treats all servers in a cache group as though they are in the same physical location, though they are
in fact only in the same region (network). A cache group has one single set of geographical coordinates
even if the caches that make up the cache group are in different physical locations. The caches in a cache
group are not aware of the other caches in the group - there is no clustering software or communications
between caches in a cache group.

There are two types of cache groups: EDGE and MID. Traffic Control is a two tier system, where the
clients get directed to the EDGE cache group. On cache miss, the cache in the EDGE cache group obtains
content from a MID cache group, rather than the origin, which is shared with multiple EDGEs. EDGE
cache groups are configured to have one single parent cache group.

2.1. Traffic Control Overview 17

http://trafficserver.readthedocs.org/en/latest/

Traffic Control Documentation, Release 1.1.3

Note: Often the EDGE to MID relationship is based on network distance, and does not necessarily match
the geographic distance.

A cache group serves a particular part of the network as defined in the coverage zone file. See The
Coverage Zone File and ASN Table.

Consider the example CDN below:

There are two MID tier cache groups, each assigned with three EDGEs. The lax, den and chi EDGE loca-
tions are configured with the West MID as their parent, and the nyc, phl, and hou EDGEs, are configured
with the East MID as their parent. On a cache miss, the EDGEs use their assigned parent.

All caches (and other servers) are assigned a Profile in Traffic Ops.

Profile

A Profile is a set of configuration settings and parameters, applied to a server. For a typical cache there are
hundreds of configuration settings to apply. The Traffic Ops parameter view contains the defined settings,
and bundled into groups using Profiles. Traffic Ops allows for duplication, comparison, import and export
of Profiles.

2.1.8 Traffic Vault

Traffic Vault is a keystore used for storing the following types of information:

• SSL Certificates

– Private Key

– CRT

18 Chapter 2. Traffic Control Overview

Traffic Control Documentation, Release 1.1.3

– CSR

• DNSSEC Keys

– Key Signing Key

* private key

* public key

– Zone Signing Key

* private key

* public key

• URL Signing Keys

As the name suggests, Traffic Vault is meant to be a “vault” of private keys that only certain users are allowed to
access. In order to create, add, and retrieve keys a user must have admin privileges. Keys can be created via the Traffic
Ops UI, but they can only be retrieved via the Traffic Ops API. The keystore used by Traffic Vault is Riak. Traffic
ops accesses Riak via https on port 8088. Traffic ops uses Riak’s rest API with username/password authentication.
Information on the API can be found here.

2.1. Traffic Control Overview 19

http://basho.com/riak/
http://docs.basho.com/riak/latest/dev/references/http/

Traffic Control Documentation, Release 1.1.3

20 Chapter 2. Traffic Control Overview

CHAPTER 3

Administrator’s Guide

How to deploy and manage a Traffic Control CDN.

3.1 Administrator’s Guide

Traffic Control is distributed in source form for the developer, but also as a binary package. This guide details how to
install and configure a Traffic Control CDN using the binary packages, as well as how to perform common operations
running a CDN.

3.1.1 Installing Traffic Ops

System Requirements

The user must have the following for a successful install:

• CentOS 6

• 4 vCPUs

• 32GB RAM

• 20 GB disk space

• YUM repository with minimally the following dependecies avaliable

– apr 1.3.9-5

– apr-util 1.3.9-3

– apr-util-ldap 1.3.9-3

– expat-devel 2.0.1-11

– genisoimage 1.1.9-12

– httpd 2.2.15

21

Traffic Control Documentation, Release 1.1.3

– httpd-tools 2.2.15

– libpcap-devel 14:1.4

– mod_ssl 1:2.2.15-29

– mysql 5.1.71

– autoconf 2.63-5.1.

– automake 1.11.1-4

– gcc 4.4.7-4

– gettext 0.17-16

– libcurl-devel 7.19.7-37

– libtool 2.2.6-15.5

– mysql-devel 5.1.73-3

– perl-CPAN 1.9402-136

– libcurl 7.19.7-37

– openssl 1.0.1e-30

– cloog-ppl 0.15.7-1.2

– cpp 4.4.7-4

– cvs 1.11.23-16

– libgomp 4.4.7-4

– libidn-devel 1.18-2

– m4 1.4.13-5

– mpfr 2.4.1-6

– perl-Digest-SHA 1:5.47-136

– ppl 0.10.2-11

– curl 7.19.7-37

– openssl-devel 1.0.1e-30

• Access to The Comprehensive Perl Archive Network (CPAN)

Note: The above versions are known to work on CentOS 6.5. Higher versions may work.

Note: Although Traffic Ops supports both MySQL and Postgres as a database, support for MySQL is more mature
and better tested. It is best to use MySQL when first getting started, and the rest of this quide assumes MySQL as the
database.

Navigating the Install

To begin the install:

1. Install Traffipc Ops: sudo yum install traffic_ops

22 Chapter 3. Administrator’s Guide

http://www.cpan.org/

Traffic Control Documentation, Release 1.1.3

2. After installation of Traffic Ops rpm enter the following command: sudo /opt/traffic_ops/
install/bin/postinstall

Example output:

trafficops-vm # /opt/traffic_ops/install/bin/postinstall

This script will build and package the required Traffic Ops perl modules.
In order to complete this operation, Development tools such as the gcc
compiler must be installed on this machine.

Hit ENTER to continue:

The first thing the post install will do is install additional packages needed from the yum repo.

Ater that, it will automatically proceed to installing the required Perl packages from CPAN.

Note: Especially when installing Traffic Ops for the first time on a system this can take a long time, since
many dependencies for the Mojolicous application need to be downloaded. Expect 30 minutes.

If there are any prompts in this phase, please just answer with the defaults (some CPAN installs can
prompt for install questions).

When this phase is complete, you will see:

...
Successfully installed Test-Differences-0.63
Successfully installed DBIx-Class-Schema-Loader-0.07042
Successfully installed Time-HiRes-1.9726 (upgraded from 1.9719)
Successfully installed Mojolicious-Plugin-Authentication-1.26
113 distributions installed
Complete! Modules were installed into /opt/traffic_ops/app/local
Linking perl libraries...
Installing perl scripts

This script will initialize the Traffic Ops database.
Please enter the following information in order to completely
configure the Traffic Ops mysql database.

Database type [mysql]:

The next phase of the install will ask you about the local environment for your CDN.

Note: before proceeding to this step, the database has to have at least a root password, and needs to
be started. When using mysql, please type service mysqld start as root in another terminal and
follow the instructions on the screen to set the root passwd.

Note: CentOS files note.

Example output:

3.1. Administrator’s Guide 23

Traffic Control Documentation, Release 1.1.3

Database type [mysql]:
Database name [traffic_ops_db]:
Database server hostname IP or FQDN [localhost]:
Database port number [3306]:
Traffic Ops database user [traffic_ops]:
Password for traffic_ops:
Re-Enter password for traffic_ops:

Error: passwords do not match, try again.

Password for traffic_ops:
Re-Enter password for traffic_ops:

Database server root (admin) user name [root]:
Database server root password:
Database Type: mysql
Database Name: traffic_ops_db
Hostname: localhost
Port: 3306
Database User: traffic_ops
Is the above information correct (y/n) [n]: y

The database properties have been saved to /opt/traffic_ops/app/conf/
→˓production/database.conf

The database configuration has been saved. Now we need to set some custom
fields that are necessary for the CDN to function correctly.

Traffic Ops url [https://localhost]: https://traffic-ops.kabletown.net
Human-readable CDN Name. (No whitespace, please) [kabletown_cdn]:
DNS sub-domain for which your CDN is authoritative [cdn1.kabletown.net]:
Fully qualified name of your CentOS 6.5 ISO kickstart tar file, or 'na' to
→˓skip and add files later [/var/cache/centos65.tgz]: na
Fully qualified location to store your ISO kickstart files [/var/www/files]:

Traffic Ops URL: https://traffic-ops.kabletown.net
Traffic Ops Info URL: https://traffic-ops.kabletown.net/info
Domainname: cdn1.kabletown.net
CDN Name: kabletown_cdn
GeoLocation Polling URL: https://traffic-ops.kabletown.net/routing/GeoIP2-
→˓City.mmdb.gz
CoverageZone Polling URL: https://traffic-ops.kabletown.net/routing/coverage-
→˓zone.json

Is the above information correct (y/n) [n]: y
Parameter information has been saved to /opt/traffic_ops/install/data/json/
→˓parameters.json

Adding an administration user to the Traffic Ops database.

Administration username for Traffic Ops: admin
Password for the admin user admin:
Verify the password for admin:
Do you wish to create an ldap configuration for access to traffic ops [y/n] ?
→˓ [n]: n

(continues on next page)

24 Chapter 3. Administrator’s Guide

Traffic Control Documentation, Release 1.1.3

(continued from previous page)

creating database
Creating database...
Creating user...
Flushing privileges...
setting up database
Executing 'drop database traffic_ops_db'
Executing 'create database traffic_ops_db'
Creating database tables...
Migrating database...
goose: migrating db environment 'production', current version: 0, target:
→˓20150316100000
OK 20141222103718_extension.sql
OK 20150108100000_add_job_deliveryservice.sql
OK 20150205100000_cg_location.sql
OK 20150209100000_cran_to_asn.sql
OK 20150210100000_ds_keyinfo.sql
OK 20150304100000_add_ip6_ds_routing.sql
OK 20150310100000_add_bg_fetch.sql
OK 20150316100000_move_hdr_rw.sql
Seeding database...
Database initialization succeeded.
seeding profile data...
name EDGE1 description Edge 1
name TR1 description Traffic Router 1
name TM1 description Traffic Monitor 1
name MID1 description Mid 1
seeding parameter data...

Explanation of the information that needs to be provided:

3.1. Administrator’s Guide 25

Traffic Control Documentation, Release 1.1.3

Field Description
Database type mysql or postgres
Database name The name of the database Traffic Ops uses to store the config-

uration information
Database server hostname
IP or FQDN

The hostname of the database server

Database port number The database port number
Traffic Ops database user The username Traffic Ops will use to read/write from the

database
password for traffic ops The passwdord for the above database user
Database server root (ad-
min) user name

Priviledged database user that has permission to create the
database and user for Traffic Ops

Database server root (ad-
min) user password

The password for the above priviledged database user

Traffic Ops url The URL to connect to this instance of Traffic Ops, usually
https://<traffic ops host FQDN>/

Human-readable CDN
Name

The name of the first CDN traffic Ops will be managing

DNS sub-domain for
which your CDN is
authoritative

The DNS domain that will be delegated to this Traffic Control
CDN

name of your CentOS 6.5
ISO kickstart tar file

See Creating the CentOS Kickstart File

Administration username
for Traffic Ops

The Administration (highest privilege) Traffic Ops user to
create; use this user to login for the first time and create other
users

Password for the admin
user

The passwd for the above user

The postinstall script will now seed the database with some inital configuration settings for the CDN and
the servers in the CDN.

The next phase is the download of the geo location database and configuration of information needed for
SSL certificates.

Example output:

Downloading MaxMind data.
--2015-04-14 02:14:32-- http://geolite.maxmind.com/download/geoip/database/
→˓GeoLite2-City.mmdb.gz
Resolving geolite.maxmind.com... 141.101.115.190, 141.101.114.190,
→˓2400:cb00:2048:1::8d65:73be, ...
Connecting to geolite.maxmind.com|141.101.115.190|:80... connected.
HTTP request sent, awaiting response... 200 OK
Length: 17633433 (17M) [application/octet-stream]
Saving to: “GeoLite2-City.mmdb.gz”

100
→˓%[==>
→˓] 17,633,433 7.03M/s in 2.4s

2015-04-14 02:14:35 (7.03 MB/s) - “GeoLite2-City.mmdb.gz” saved [17633433/
→˓17633433]

(continues on next page)

26 Chapter 3. Administrator’s Guide

https:/

Traffic Control Documentation, Release 1.1.3

(continued from previous page)

Copying coverage zone file to public dir.

Installing SSL Certificates.

We're now running a script to generate a self signed X509 SSL certificate.
When prompted to enter a pass phrase, just enter 'pass' each time. The
pass phrase will be stripped from the private key before installation.

When prompted to enter a 'challenge password', just hit the ENTER key.

The remaining enformation Country, State, Locality, etc... are required to
generate a properly formatted SSL certificate.

Hit Enter when you are ready to continue:
Postinstall SSL Certificate Creation.

Generating an RSA Private Server Key.

Generating RSA private key, 1024 bit long modulus
..........................++++++
.....................++++++
e is 65537 (0x10001)
Enter pass phrase for server.key:
Verifying - Enter pass phrase for server.key:

The server key has been generated.

Creating a Certificate Signing Request (CSR)

Enter pass phrase for server.key:
You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [XX]:US
State or Province Name (full name) []:CO
Locality Name (eg, city) [Default City]:Denver
Organization Name (eg, company) [Default Company Ltd]:
Organizational Unit Name (eg, section) []:
Common Name (eg, your name or your server's hostname) []:
Email Address []:

Please enter the following 'extra' attributes
to be sent with your certificate request
A challenge password []:pass
An optional company name []:

The Certificate Signing Request has been generated.
Removing the pass phrase from the server key.
Enter pass phrase for server.key.orig:
writing RSA key

The pass phrase has been removed from the server key.

(continues on next page)

3.1. Administrator’s Guide 27

Traffic Control Documentation, Release 1.1.3

(continued from previous page)

Generating a Self-signed certificate.
Signature ok
subject=/C=US/ST=CO/L=Denver/O=Default Company Ltd
Getting Private key

A server key and self signed certificate has been generated.

Installing the server key and server certificate.

The private key has been installed.

Installing the self signed certificate.

Saving the self signed csr.

The self signed certificate has now been installed.

You may obtain a certificate signed by a Certificate Authority using the
server.csr file saved in the current directory. Once you have obtained
a signed certificate, copy it to /etc/pki/tls/certs/localhost.crt and
restart Traffic Ops.

SSL Certificates have been installed.

Starting Traffic Ops.

Starting Traffic Ops

Subroutine TrafficOps::has redefined at /opt/traffic_ops/app/local/lib/perl5/
→˓Mojo/Base.pm line 38.
Subroutine TrafficOps::has redefined at /opt/traffic_ops/app/local/lib/perl5/
→˓Mojo/Base.pm line 38.
Loading config from /opt/traffic_ops/app/conf/cdn.conf
Reading log4perl config from /opt/traffic_ops/app/conf/production/log4perl.
→˓conf
Starting hot deployment for Hypnotoad server 32192.

Waiting for Traffic Ops to start.

Shutdown Traffic Ops [y/n] [n]: n

To start Traffic Ops: service traffic_ops start
To stop Traffic Ops: service traffic_ops stop

traffic_ops #

Traffic Ops is now installed!

3. Download the web dependencies (this will be added to the installer in the future):

traffic_ops # pwd
/opt/traffic_ops/install/bin
traffic_ops # ./download_web_deps
Finished curling https://cdn.datatables.net/1.10.4/js/jquery.dataTables.min.js |
→˓size is: 78746 (continues on next page)

28 Chapter 3. Administrator’s Guide

Traffic Control Documentation, Release 1.1.3

(continued from previous page)

Finished curling https://github.com/fancyapps/fancyBox/zipball/v2.1.5 | size is:
→˓541026
Finished curling http://www.flotcharts.org/downloads/flot-0.8.3.zip | size is:
→˓649913
Finished curling https://github.com/krzysu/flot.tooltip/releases/download/0.8.4/
→˓jquery.flot.tooltip-0.8.4.zip | size is: 7669
Finished curling https://gflot.googlecode.com/svn-history/r154/trunk/flot/jquery.
→˓flot.axislabels.js | size is: 17321
Finished curling https://github.com/alpixel/jMenu/archive/master.zip | size is:
→˓41836
Finished curling https://code.jquery.com/jquery-1.11.2.min.js | size is: 95931
Finished curling https://code.jquery.com/ui/1.11.4/jquery-ui.min.js | size is:
→˓240427
Finished curling https://code.jquery.com/ui/1.7.3/themes/dark-hive/jquery-ui.css
→˓| size is: 27499
Finished curling http://jquery-ui.googlecode.com/svn/tags/1.7.3/themes/dark-hive/
→˓images/ui-bg_flat_30_cccccc_40x100.png | size is: 180
Finished curling http://jquery-ui.googlecode.com/svn/tags/1.7.3/themes/dark-hive/
→˓images/ui-bg_flat_50_5c5c5c_40x100.png | size is: 180
Finished curling http://jquery-ui.googlecode.com/svn/tags/1.7.3/themes/dark-hive/
→˓images/ui-bg_glass_40_ffc73d_1x400.png | size is: 131
Finished curling http://jquery-ui.googlecode.com/svn/tags/1.7.3/themes/dark-hive/
→˓images/ui-bg_highlight-hard_20_0972a5_1x100.png | size is: 114
Finished curling http://jquery-ui.googlecode.com/svn/tags/1.7.3/themes/dark-hive/
→˓images/ui-bg_highlight-soft_33_003147_1x100.png | size is: 127
Finished curling http://jquery-ui.googlecode.com/svn/tags/1.7.3/themes/dark-hive/
→˓images/ui-bg_highlight-soft_35_222222_1x100.png | size is: 113
Finished curling http://jquery-ui.googlecode.com/svn/tags/1.7.3/themes/dark-hive/
→˓images/ui-bg_highlight-soft_44_444444_1x100.png | size is: 117
Finished curling http://jquery-ui.googlecode.com/svn/tags/1.7.3/themes/dark-hive/
→˓images/ui-bg_highlight-soft_80_eeeeee_1x100.png | size is: 95
Finished curling http://jquery-ui.googlecode.com/svn/tags/1.7.3/themes/dark-hive/
→˓images/ui-bg_loop_25_000000_21x21.png | size is: 235
Finished curling http://jquery-ui.googlecode.com/svn/tags/1.7.3/themes/dark-hive/
→˓images/ui-icons_222222_256x240.png | size is: 4369
Finished curling http://jquery-ui.googlecode.com/svn/tags/1.7.3/themes/dark-hive/
→˓images/ui-icons_4b8e0b_256x240.png | size is: 4369
Finished curling http://jquery-ui.googlecode.com/svn/tags/1.7.3/themes/dark-hive/
→˓images/ui-icons_a83300_256x240.png | size is: 4369
Finished curling http://jquery-ui.googlecode.com/svn/tags/1.7.3/themes/dark-hive/
→˓images/ui-icons_cccccc_256x240.png | size is: 4369
Finished curling http://jquery-ui.googlecode.com/svn/tags/1.7.3/themes/dark-hive/
→˓images/ui-icons_ffffff_256x240.png | size is: 4369
Finished curling https://maxcdn.bootstrapcdn.com/bootstrap/3.3.4/js/bootstrap.min.
→˓js | size is: 35951
Output file: ../../app/public/js/jquery.dataTables.min.js does not exist, putting
→˓into place.
Making dir: ../../app/public/js/fancybox/
Output file: ../../app/public/js/fancybox//jquery.fancybox-buttons.js does not
→˓exist. Putting file from zip into place.
Output file: ../../app/public/js/fancybox//fancybox_loading@2x.gif does not exist.
→˓ Putting file from zip into place.
Output file: ../../app/public/js/fancybox//fancybox_loading.gif does not exist.
→˓Putting file from zip into place.
Output file: ../../app/public/js/fancybox//fancybox_buttons.png does not exist.
→˓Putting file from zip into place.
Output file: ../../app/public/js/fancybox//jquery.fancybox-thumbs.js does not
→˓exist. Putting file from zip into place. (continues on next page)

3.1. Administrator’s Guide 29

Traffic Control Documentation, Release 1.1.3

(continued from previous page)

Output file: ../../app/public/js/fancybox//jquery.fancybox-buttons.css does not
→˓exist. Putting file from zip into place.
Output file: ../../app/public/js/fancybox//jquery.fancybox-thumbs.css does not
→˓exist. Putting file from zip into place.
Output file: ../../app/public/js/fancybox//fancybox_sprite@2x.png does not exist.
→˓Putting file from zip into place.
Output file: ../../app/public/js/fancybox//jquery.fancybox.css does not exist.
→˓Putting file from zip into place.
Output file: ../../app/public/js/fancybox//jquery.fancybox-media.js does not
→˓exist. Putting file from zip into place.
Output file: ../../app/public/js/fancybox//fancybox_overlay.png does not exist.
→˓Putting file from zip into place.
Output file: ../../app/public/js/fancybox//fancybox_sprite.png does not exist.
→˓Putting file from zip into place.
Output file: ../../app/public/js/fancybox//jquery.fancybox.js does not exist.
→˓Putting file from zip into place.
Making dir: ../../app/public/js/flot/
Output file: ../../app/public/js/flot//jquery.flot.min.js does not exist. Putting
→˓file from zip into place.
Output file: ../../app/public/js/flot//jquery.flot.selection.js does not exist.
→˓Putting file from zip into place.
Output file: ../../app/public/js/flot//jquery.flot.stack.js does not exist.
→˓Putting file from zip into place.
Output file: ../../app/public/js/flot//jquery.flot.time.js does not exist.
→˓Putting file from zip into place.
Output file: ../../app/public/js/flot//jquery.flot.tooltip.js does not exist.
→˓Putting file from zip into place.
Output file: ../../app/public/js/flot/jquery.flot.axislabels.js does not exist,
→˓putting into place.
Output file: ../../app/public/js//jMenu.jquery.min.js does not exist. Putting
→˓file from zip into place.
Output file: ../../app/public/css//jmenu.css does not exist. Putting file from
→˓zip into place.
Output file: ../../app/public/js/jquery-1.11.2.min.js does not exist, putting
→˓into place.
Output file: ../../app/public/js/jquery-ui.min.js does not exist, putting into
→˓place.
Output file: ../../app/public/css/jquery-ui.css does not exist, putting into
→˓place.
Making dir: ../../app/public/css/images/
Output file: ../../app/public/css/images/ui-bg_flat_30_cccccc_40x100.png does not
→˓exist, putting into place.
Output file: ../../app/public/css/images/ui-bg_flat_50_5c5c5c_40x100.png does not
→˓exist, putting into place.
Output file: ../../app/public/css/images/ui-bg_glass_40_ffc73d_1x400.png does not
→˓exist, putting into place.
Output file: ../../app/public/css/images/ui-bg_highlight-hard_20_0972a5_1x100.png
→˓does not exist, putting into place.
Output file: ../../app/public/css/images/ui-bg_highlight-soft_33_003147_1x100.png
→˓does not exist, putting into place.
Output file: ../../app/public/css/images/ui-bg_highlight-soft_35_222222_1x100.png
→˓does not exist, putting into place.
Output file: ../../app/public/css/images/ui-bg_highlight-soft_44_444444_1x100.png
→˓does not exist, putting into place.
Output file: ../../app/public/css/images/ui-bg_highlight-soft_80_eeeeee_1x100.png
→˓does not exist, putting into place.
Output file: ../../app/public/css/images/ui-bg_loop_25_000000_21x21.png does not
→˓exist, putting into place. (continues on next page)

30 Chapter 3. Administrator’s Guide

Traffic Control Documentation, Release 1.1.3

(continued from previous page)

Output file: ../../app/public/css/images/ui-icons_222222_256x240.png does not
→˓exist, putting into place.
Output file: ../../app/public/css/images/ui-icons_4b8e0b_256x240.png does not
→˓exist, putting into place.
Output file: ../../app/public/css/images/ui-icons_a83300_256x240.png does not
→˓exist, putting into place.
Output file: ../../app/public/css/images/ui-icons_cccccc_256x240.png does not
→˓exist, putting into place.
Output file: ../../app/public/css/images/ui-icons_ffffff_256x240.png does not
→˓exist, putting into place.
Output file: ../../app/public/js/bootstrap.min.js does not exist, putting into
→˓place.
traffic_ops #

Upgrading Traffic Ops

To upgrade:

1. Enter the following command:service traffic_ops stop

2. Enter the following command:yum upgrade traffic_ops

3. See Installing Traffic Ops to run the post install.

4. Enter the following command:service traffic_ops start

3.1.2 Configuring Traffic Ops

Follow the steps below to configure the newly installed Traffic Ops Instance.

Installing the SSL Cert

By default, Traffic Ops runs as an SSL web server, and a certificate needs to be installed. TBD.

Content Delivery Networks

Parameters an profiles

Many of the settings for the different servers in a Traffic Control CDN are controlled by parameters in the parameter
view of Traffic Ops. Parameters are grouped in profiles and profiles are assigned to a server. For a typical cache there
are hundreds of configuration settings to apply. The Traffic Ops parameter view contains the defined settings. To
make life easier, Traffic Ops allows for duplication, comparison, import and export of Profiles. Traffic Ops also has
a “Global profile” - the parameters in this profile are going to be applied to all servers in the Traffic Ops instance, or
apply to Traffic Ops themselves. These parameters are:

3.1. Administrator’s Guide 31

Traffic Control Documentation, Release 1.1.3

Name Con-
fig
file

Value

tm.url global The URL where this Traffic Ops instance is being served from.
tm.toolnameglobal The name of the Traffic Ops tool. Usually “Traffic Ops”. Used in the About screen and in the

comments headers of the files generated.
tm.infourl global This is the “for more information go here” URL, which is visible in the About page.
tm.logourlglobal This is the URL of the logo for Traffic Ops and can be relative if the logo is under traf-

fic_ops/app/public.
tm.instance_nameglobal The name of the Traffic Ops instance. Can be used when multiple instances are active. Visible in

the About page.
tm.traffic_mon_fwd_proxyglobal When collecting stats from Traffic Monitor, Traffic Ops uses this forward proxy to pull the stats

through. This can be any of the MID tier caches, or a forward cache specifically deployed for this
purpose. Setting this variable can significantly lighten the load on the Traffic Monitor system and
it is recommended to set this parameter on a production system.

ge-
oloca-
tion.polling.url

CR-
Con-
fig.json

The location to get the GeoLiteCity database from.

ge-
oloca-
tion6.polling.url

CR-
Con-
fig.json

The location to get the IPv6 GeoLiteCity database from.

These parameters should be set to reflect the local environment.

After running the postinstall script, Traffic Ops has the following profiles pre-loaded:

Name Description
EDGE1 The profile to be applied to the latest supported version of ATS, when running as an EDGE cache
TR1 The profile to be applied to the latest version of Traffic Router
TM1 The profile to be applied to the latest version of Traffic Monitor
MID1 The profile to be applied to the latest supported version of ATS, when running as an MID cache
RIAK_ALL Riak profile for all CDNs to be applied to the Traffic Vault servers

..Note:: The Traffic Server profiles contain some information that is specific to the hardware being used (most notably
the disk configuration), so some parameters will have to be changed to reflect your configuration. Future releases of
Traffic Control will separate the hardware and software profiles so it is easier to “mix-and-match” different hardware
configurations.

Below is a list of cache parameters that are likely to need changes from the default profiles shipped with Traffic Ops:

32 Chapter 3. Administrator’s Guide

Traffic Control Documentation, Release 1.1.3

Name Con-
fig
file

Description

allow_ip as-
tats.config

This is a comma separated list of IPv4 CIDR blocks that will have access to the astats
statistics on the caches. The Traffic Monitor IP addresses have to be included in this,
if they are using IPv4 to monitor the caches.

allow_ip6 as-
tats.config

This is a comma separated list of IPv6 CIDR blocks that will have access to the astats
statistics on the caches. The Traffic Monitor IP addresses have to be included in this,
if they are using IPv6 to monitor the caches.

Drive_Prefix stor-
age.config

JvD/Jeff to supply blurb

Drive_Letters stor-
age.config

JvD/Jeff to supply blurb

purge_allow_ip ip_allow.configThe IP address that is allowed to “purge” content on the CDN through
regex_revalidate

health.threshold.loadavgras-
cal.properties

The Unix load average at which Traffic Router will stop sending traffic to this cache

health.threshold.\
availableBand-
widthInKbps

ras-
cal.properties

The amount of bandwidth that Traffic Router will try to keep available on the cache.
For example: “”>1500000” means stop sending new traffic to this cache when traffic
is at 8.5Gbps on a 10Gbps interface.

Regions, Locations and Cache Groups

All servers have to have a location, which is their physical location. Each location is part of a region, and each region
is part of a division. For Example, Denver could be a location in the Mile High region and that region could be
part of the West division. Enter your divisions first in Misc->Divisions, then enter the regions in Misc->Regions,
referencing the divisions entered, and finally, enter the physical locations in Misc->Locations, referencing the regions
entered.

All servers also have to be part of a cache group. A cache group is a logical grouping of caches, that don’t have to
be in the same physical location (in fact, usually a cache group is spread across minimally 2 physical locations for
redundancy purposes), but share geo coordinates for content routing purposes. JvD to add more.

Creating the CentOS Kickstart File

The kickstart file is a text file, containing a list of items, each identified by a keyword. You can create it by using
the Kickstart Configurator application, or writing it from scratch. The Red Hat Enterprise Linux installation program
also creates a sample kickstart file based on the options that you selected during installation. It is written to the file
/root/anaconda-ks.cfg. This file is editable using most text editors that can save files as ASCII text.

To generate ISO, the CentOS Kickstart is necessary:

1. Create a kickstart file.

2. Create a boot media with the kickstart file or make the kickstart file available on the network.

3. Make the installation tree available.

4. Start the kickstart installation.

Create a ks.src file in the root of the selection location. See the example below:

mkdir newdir
cd newdir/

(continues on next page)

3.1. Administrator’s Guide 33

Traffic Control Documentation, Release 1.1.3

(continued from previous page)

cp -r ../centos65/* .
vim ks.src
vim isolinux/isolinux.cfg
cd vim osversions.cfg
vim osversions.cfg

This is a standard kickstart formatted file that the generate ISO process uses to create the kickstart (ks.cfg) file for the
install. The generate ISO process uses the ks.src, overwriting any information set in the Generate ISO tab in Traffic
Ops, creating ks.cfg.

Note: Streamline your install folder for under 1GB, which assists in creating a CD.

See also:

For in-depth instructions, please see Kickstart Installation

3.1.3 Using Traffic Ops

The Traffic Ops Menu

The following tabs are available in the menu at the top of the Traffic Ops user interface.

• Health

Information on the health of the system. Hover over this tab to get to the following options:

Op-
tion

Description

Ta-
ble
View

A real time view into the main performance indicators of the CDNs managed by Traffic Control.
This view is sourced directly by the Traffic Monitor data and is updated every 10 seconds. This is
the default screen of Traffic Ops. See The Health Table for details.

Graph
View

A real graphical time view into the main performance indicators of the CDNs managed by Traffic
Control. This view is sourced by the Traffic Monitor data and is updated every 10 seconds. On
loading, this screen will show a history of 24 hours of data from Traffic Stats See Graph View for
details.

Server
Checks

A table showing the results of the periodic check extension scripts that are run. See Server Checks

Daily
Sum-
mary

A graph displaying the daily peaks of bandwidth, overall bytes served per day, and overall bytes
served since initial installation per CDN.

• Delivery Services

The main Delivery Service table. This is where you Create/Read/Update/Delete Delivery Services of all types.
There are currently no sub menus for this tab.

• Servers

34 Chapter 3. Administrator’s Guide

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Installation_Guide/s1-kickstart2-howuse.html

Traffic Control Documentation, Release 1.1.3

The main Servers table. This is where you Create/Read/Update/Delete servers of all types. Click the main tab
to get to the main table, and hover over to get these sub options:

Option Description
Upload Server CSV Bulk add of servers from a csv file. See Bulk Upload Server

• Parameters

Parameters and Profiles can be edited here. Hover over the tab to get the following options:

Option Description
Global Pro-
file

The table of global parameters. See Parameters an profiles. This is where you Cre-
ate/Read/Update/Delete parameters in the Global profile

All Cache
Groups

The table of all parameters that are assgined to a cachegroup - this may be slow to pull up,
as there can be thousands of parameters.

All Profiles The table of all parameters that are assgined to a profile - this may be slow to pull up, as there
can be thousands of parameters.

Select Pro-
file

Select the parameter list by profile first, then get a table of just the parameters for that profile.

Orphaned
Parameters

A table of parameters that are not associated to any profile of cache group. These parameters
either should be deleted or associated with a profile of cache group.

• Tools

Tools for working with Traffic Ops and it’s servers. Hover over this tab to get the following options:

Option Description
Generate ISO Generate a bootable image for any of the servers in the Servers table (or any server for

that matter). See Generate ISO
Queue Updates Send Updates to the caches. See Queue Updates and Snapshot CRConfig
DB Dump Backup the Database to a .sql file.
Snapshot CRCon-
fig

Send updates to the Traffic Monitor / Traffic Router servers. See Queue Updates and
Snapshot CRConfig

Invalidate Con-
tent

Invalidate or purge content from the CDN. See Invalidate Content

Generate
DNSSEC keys

Neuman?

• Misc

Miscellaneous editing options. Hover over this tab to get the following options:

3.1. Administrator’s Guide 35

Traffic Control Documentation, Release 1.1.3

Option Description
Cache Groups Create/Read/Update/Delete cache groups
Users Create/Read/Update/Delete users
Profiles Create/Read/Update/Delete profiles. See Parameters and Profiles
Net-
works(ASNs)

Create/Read/Update/Delete Autonomous System Numbers See The Coverage Zone File
and ASN Table

Hardware Get detailed hardware information (note: this should be moved to a Traffic Ops Exten-
sion)

Data Types Create/Read/Update/Delete data types
Divisions Create/Read/Update/Delete divisions
Regions Create/Read/Update/Delete regions
Physical Loca-
tions

Create/Read/Update/Delete locations

• ChangeLog

The Changelog table displays the changes that are being made to the Traffic Ops database through the Traffic
Ops user interface. This tab will show the number of changes since you last visited this tab in (brackets) since
the last time you visited this tab. There are currently no sub menus for this tab.

• Help

Help for Traffic Ops and Traffic Control. Hover over this tab to get the following options:

Option Description
About Traffic Ops information, such as version, database information, etc
Release Notes Release notes for the most recent releases of Traffic Ops
Logout Logout from Traffic Ops

Health

The Health Table

The Health table is the default landing screen for Traffic Ops, it displays the status of the EDGE caches in a table form
directly from Traffic Monitor (bypassing Traffic Stats), sorted by Mbps Out. The columns in this table are:

• Profile: the Profile of this server or ALL, meaning this row shows data for multiple servers, and the row shows
the sum of all values.

• Host Name: the host name of the server or ALL, meaning this row shows data for multiple servers, and the row
shows the sum of all values.

• Edge Cache Group: the edge cache group short name or ALL, meaning this row shows data for multiple
servers, and the row shows the sum of all values.

• Healthy: indicates if this cache is healthy according to the Health Protocol. A row with ALL in any of the

columns will always show a , this column is valid only for individual EDGE caches.

• Admin: shows the administrative status of the server.

• Connections: the number of connections this cache (or group of caches) has open (ats.proxy.process.
http.current_client_connections from ATS).

• Mbps Out: the bandwidth being served out if this cache (or group of caches)

36 Chapter 3. Administrator’s Guide

Traffic Control Documentation, Release 1.1.3

Since the top line has ALL, ALL, ALL, it shows the total connections and bandwidth for all caches managed by this
instance of Traffic Ops.

Graph View

The Graph View shows a live view of the last 24 hours of bits per seconds served and open connections at the edge in
a graph. This data is sourced from Traffic Stats. If there are 2 CDNs configured, this view will show the statistis for
both, and the graphs are stacked. On the left-hand side, the totals and immediate values as well as the percentage of
total possible capacity are displayed. This view is update every 10 seconds.

Server Checks

Server Checks are ..

Daily Summary

Server

This view shows a table of all the servers in Traffic Ops. The table columns show the most important details of the

server. The IPAddrr column is clickable to launch an ssh:// link to this server. The icon will link to a

Traffic Stats graph of this server for caches, and the will link to the server status pages for other server types.

Server Types

These are the types of servers that can be managed in Traffic Ops:

Name Description
EDGE Edge Cache
MID Mid Tier Cache
ORG Origin
CCR Comcast Content Router
RASCAL Rascal health polling & reporting
REDIS Redis stats gateway (will be obsolete soon)
TOOLS_SERVER Ops hosts for managment
RIAK Riak keystore
SPLUNK SPLUNK indexer search head etc
TRAFFIC_STATS traffic_stats server
INFLUXDB influxDb server

Bulk Upload Server

Delivery Service

The fields in the Delivery Service view are:

3.1. Administrator’s Guide 37

Traffic Control Documentation, Release 1.1.3

Name Description
XML ID A unique string that identifies this delivery service.
Content Routing Type The type of content routing this delivery service will

use. See Delivery Service Types.
Protocol The protocol to serve this delivery service to the clients

with:
• 0 http
• 1 https
• 2 both http and https

DSCP Tag The DSCP value to mark IP packets to the client with.
Signed URLs Use Signed URLs? See Token Based Authentication.
Query String Handling How to treat query strings:

• 0 use in cache key and hand up to origin -this
means each unique query string Is treated as a
unique URL.

• 1 Do not use in cache key, but pass up to origin
- this means a 2 URLs that are the same except
for the query string will match, and cache HIT,
while the origin still sees original query string in
the request.

• 2 Drop at edge - this means a 2 URLs that are the
same except for the query string will match, and
cache HIT, while the origin will not see original
query string in the request.

Geo Limit? Some services are intended to be limited by geography.
The possible settings are are:

• None - Do not limit by geography.
• CZF only - If the requesting IP is not in the Cov-

erage Zone File, do not serve the request.
• CZF + US - If the requesting IP is not in the Cov-

erage Zone File or not in the United States, do not
serve the request.

Bypass FQDN (for HTTP routed delivery services only) This is the
FQDN Traffic Router will redirect to (with the same
path) when the max Bps or Max Tps for this delivery-
service are exceeded.

Bypass Ipv4 (For DNS routed delivery services only) This is the ad-
dress to respond to A requests with when the the max
Bps or Max Tps for this delivery service are exceeded.

Bypass IPv6 (For DNS routed delivery services only) This is the ad-
dress to respond to AAAA requests with when the the
max Bps or Max Tps for this delivery service are ex-
ceeded.

IPv6 Routing Enabled? When set to yes, the Traffic Router will respond to
AAAA DNS requests for the tr. and edge. names of
this delivery service. Otherwise, only A records will be
served.

Continued on next page

38 Chapter 3. Administrator’s Guide

Traffic Control Documentation, Release 1.1.3

Table 1 – continued from previous page
Name Description
Range Request Handling (experimental) How to treat range requests:

• 0 Do not cache (ranges requested from files taht
are already cached due to a non range request will
be a HIT)

• 1 Use the background_fetch plugin.
• 2 Use the cache_range_requests plugin.

Delivery Service DNS TTL The Time To Live on the DNS record for the
Traffic Router A and AAAA records (tr.
<deliveryservice>.<cdn-domain>)
for a HTTP delivery service or for the A and
AAAAA records of the edge name (edge.
<deliveryservice>.<cdn-domain>).

Origin Server Base URL The Origin Server’s base URL. This includes the pro-
tocol (http or https). Example: http://movies.
origin.com

Use Multi Site Origin Feature Enable the Multi Site Origin feature for this delivery ser-
vice. See Multi Site Origin

CCR profile The Traffic Router profile for this delivery service. See
CCR Profile or Traffic Router Profile.

Maximum Bits per Second allowed globally The maximum bits per second this delivery service can
serve across all EDGE caches before traffic will be di-
verted to the bypass destination. For a DNS delivery
service, the Bypass Ipv4 or Ipv6 will be used (depend-
ing on whether this was a A or AAAA request), and for
HTTP delivery services the Bypass FQDN will be used.

Maximum Transactions per Second allowed globally The maximum transactions per se this delivery service
can serve across all EDGE caches before traffic will be
diverted to the bypass destination. For a DNS delivery
service, the Bypass Ipv4 or Ipv6 will be used (depend-
ing on whether this was a A or AAAA request), and for
HTTP delivery services the Bypass FQDN will be used.

Geo Miss Default Latitude Default Latitude for this delivery service. When
client localization fails for bot Coverage Zone and Geo
Lookup, this the client will be routed as if it was at this
lat.

Geo Miss Default Longitude Default Longitude for this delivery service. When
client localization fails for bot Coverage Zone and Geo
Lookup, this the client will be routed as if it was at this
long.

Edge Header Rewrite Rules Header Rewrite rules to apply for this delivery service
at the EDGE tier. See Header Rewrite Options and
DSCP.1

Mid Header Rewrite Rules Header Rewrite rules to apply for this delivery service at
the MID tier. See Header Rewrite Options and DSCP.1

Regex Remap Expression Regex Remap rule to apply to this delivery service at the
Edge tier. See ATS documentation on regex_remap.1

Cache URL expression Cache URL rule to apply to this delivery service. See
ATS documentation on cacheurl.1

Continued on next page

3.1. Administrator’s Guide 39

https://docs.trafficserver.apache.org/en/latest/reference/plugins/background_fetch.en.html
https://docs.trafficserver.apache.org/en/latest/reference/plugins/regex_remap.en.html
https://docs.trafficserver.apache.org/en/latest/reference/plugins/cacheurl.en.html

Traffic Control Documentation, Release 1.1.3

Table 1 – continued from previous page
Name Description
Raw remap text For HTTP and DNS deliveryservices, this will get added

to the end of the remap line on the cache verbatim. For
ANY_MAP deliveryservices this is the remap line.1

Long Description Long description for this delivery service. To be con-
sumed from the APIs by downstream tools (Portal).

Customer Customer description for this delivery service. To be
consumed from the APIs by downstream tools (Portal).

Service Service description for this delivery service. To be con-
sumed from the APIs by downstream tools (Portal).

Info URL Info URL for this delivery service. To be consumed
from the APIs by downstream tools (Portal).

Check Path A path (ex: /crossdomain.xml) to verify the connection
to the origin server with. This can be used by Check
Extension scripts to do periodic health checks against
the delivery service.

Origin Shield (Pipe Delimited String) Experimental. Origin Shield string. See rl-org-shield
Active When this is set to no Traffic Router will not serve DNS

or HTTP responses for this delivery service.
Last Updated (Read Only) The last time this delivery service was up-

dated.
Number of edges assigned (Read Only - change by clicking the Server Assign-

ments button at the bottom) The number of EDGE
caches assigned to this delivery service. See Server As-
signments.

Number of static DNS entries (Read Only - change by clicking the Static DNS button
at the bottom) The number of static DNS entries for this
delivery service. See Static DNS Entries.

Example delivery URL (Read Only) An example of how the delivery URL
may start. This could be multiple rows if multiple
HOST_REGEXP entries have been entered.

Regular expressions for this delivery service A subtable of the regular expressions to use when rout-
ing traffic for this delivery service. See Delivery Service
Regexp.

Delivery Service Types

One of the most important settings when creating the delivery service is the selection of the delivery service type. This
type determines the routing method and the primary storage for the delivery service.

1 These fields are not validated by Traffic Ops to be correct syntactically, and can cause Traffic Server to not start if invalid. Please use with
caution.

40 Chapter 3. Administrator’s Guide

Traffic Control Documentation, Release 1.1.3

Name Description
HTTP HTTP Content Routing - The Traffic Router DNS auth server returns its own IP address on DNS queries,

and the client gets redirected to a specific cache in the nearest cache group using HTTP 302. Use this
for long sessions like HLS/HDS/Smooth live streaming, where a longer setup time is not a. problem.

DNS DNS Content Routing - The Traffic Router DNS auth server returns an edge cache IP address to the
client right away. The client will find the cache quickly but the Traffic Router can not route to a cache
that already has this content in the cache group. Use this for smaller objects like web page images /
objects.

HTTP_NO_CACHEHTTP Content Routing, but the caches will not actually cache the content, they act as just proxies. The
MID tier is bypassed.

HTTP_LIVEHTTP Content routing, but where for “standard” HTTP content routing the objects are stored on disk,
for this delivery service type the objects are stored on the RAM disks. Use this for linear TV. The MID
tier is bypassed for this type.

HTTP_LIVE_NATNLHTTP Content routing, same as HTTP_LIVE, but the MID tier is NOT bypassed.
DNS_LIVE_NATNLDNS Content routing, ut where for “standard” DNS content routing the objects are stored on disk, for

this delivery service type the objects are stored on the RAM disks. Use this for linear TV. The MID tier
is NOT bypassed for this type.

DNS_LIVEDNS Content routing, same as DNS_LIVE_NATIONAL, but the MID tier is bypassed.
ANY_MAPANY_MAP is not known to Traffic Router. For this deliveryservice, the “Raw remap text” field in the

input form will be used as the remap line on the cache.

Note: Once created, the Traffic Ops user interface does not allow you to change the delivery service type; the drop
down is greyed out. There are many things that can go wrong when changing the type, and it is safer to delete the
delivery service, and recreate it.

Header Rewrite Options and DSCP

Most header manipulation and per-delivery service configuration overrides are done using the ATS Header Rewrite
Plugin. Traffic Control allows you to enter header rewrite rules to be applied at the edge and at the mid level. The
syntax used in Traffic Ops is the same as the one described in the ATS documentation, except for some special strings
that will get replaced:

Traffic Ops Entry Gets Replaced with
__RETURN__ A newline
__CACHE_IPV4__ The cache’s IPv4 address

The deliveryservice screen also allows you to set the DSCP value of traffic sent to the client. This setting also results
in a header_rewrite rule to be generated and applied to at the edge.

Note: The DSCP setting in the UI is only for setting traffic towards the client, and gets applied after the initial TCP
handshake is complete, and the HTTP request is received (before that the cache can’t determine what deliveryservice
this request is for, and what DSCP to apply), so the DSCP feature can not be used for security settings - the TCP
SYN-ACK is not going to be DSCP marked.

3.1. Administrator’s Guide 41

https://docs.trafficserver.apache.org/en/latest/reference/plugins/header_rewrite.en.html
https://docs.trafficserver.apache.org/en/latest/reference/plugins/header_rewrite.en.html

Traffic Control Documentation, Release 1.1.3

Token Based Authentication

Token based authentication or signed URLs is implemented using the Traffic Server url_sig plugin. To sign a
URL at the signing portal take the full URL, without any query string, and add on a query string with the following
parameters:

Client IP address The client IP address that this signature is valid for.

C=<client IP address>

Expiration The Expiration time (seconds since epoch) of this signature.

E=<expiration time in secs since unix epoch>

Algorithm The Algorithm used to create the signature. Only 1 (HMAC_SHA1) and 2 (HMAC_MD5) are supported
at this time

A=<algorithm number>

Key index Index of the key used. This is the index of the key in the configuration file on the cache. The set of keys
is a shared secret between the signing portal and the edge caches. There is one set of keys per reverse proxy
domain (fqdn).

K=<key index used>

Parts Parts to use for the signature, always excluding the scheme (http://). parts0 = fqdn, parts1..x is the directory
parts of the path, if there are more parts to the path than letters in the parts param, the last one is repeated for
those. Examples:

1: use fqdn and all of URl path 0110: use part1 and part 2 of path only 01: use everything except the
fqdn

P=<parts string (0's and 1's>

Signature The signature over the parts + the query string up to and including “S=”.

S=<signature>

See also:

The url_sig README.

Generate URL Sig Keys

To generate a set of random signed url keys for this delivery service and store them in Traffic Vault, click the Generate
URL Sig Keys button at the bottom of the delivery service details screen.

Multi Site Origin

Note: The Multi Site Origin feature is based upon a feature n ATS that has yet to be submitted to Traffic Server
upstream, until it is, set this to 0.

Normally, the mid servers are not aware of any redundancy at the origin layer. With Multi Site Origin enabled this
changes - Traffic Server (and Traffic Ops) are now made aware of the fact there are multiple origins, and can be
configured to do more advanced failover and loadbalancing actions.

42 Chapter 3. Administrator’s Guide

http://
https://github.com/apache/trafficserver/blob/master/plugins/experimental/url_sig/README

Traffic Control Documentation, Release 1.1.3

With This feature enabled, origin servers (or origin server VIP names for a site) are going to be entered as servers in
to the Traiffic Ops UI. Server type is With This feature enabled, origin servers (or origin server VIP names for a site)
are going to be entered as servers in to the Traiffic Ops UI. Server type is “”

Parameters in the Origin profile that influence this feature:

Name De-
fault

Description

CONFIG proxy.config.http.parent_proxy_routing_enableINT 1 enable parent selection. This is a required setting.
CONFIG proxy.config.url_remap.remap_requiredINT 1 required for parent selection.
CONFIG proxy.config.http.parent_proxy.per_parent_connect_attemptsINT 5 maximum of 5 connection attempts per parent (par-

ent.config list) within a transaction.
CONFIG proxy.config.http.parent_proxy.total_connect_attemptsINT 10 maximum of 10 total connection attempts within a trans-

action.
CONFIG proxy.config.http.parent_origin.simple_retry_enabledINT 1 enables simple retry.
CONFIG proxy.config.http.parent_origin.simple_retry_response_codesSTRING

404
the response code that invokes simple retry. May be a
comman separated list of response codes.

CONFIG proxy.config.http.parent_origin.dead_server_retry_response_codesSTRING
503

the response code that invokes dead server retry. May be
a comma separated list of response codes

CONFIG proxy.config.http.parent_origin.dead_server_retry_enabledINT 1 enables dead server retry.
CONFIG proxy.config.diags.debug.enabled INT 1 enable debugging for testing only

3.1. Administrator’s Guide 43

Traffic Control Documentation, Release 1.1.3

CCR Profile or Traffic Router Profile

Name Config_file Description
location dns.zone Location to store the DNS zone files in the local file system of Traffic

Router.
location http-

log4j.properties
Location to find the log4j.properties file for Traffic Router.

location dns-
log4j.properties

Location to find the dns-log4j.properties file for Traffic Router.

location geoloca-
tion.properties

Location to find the log4j.properties file for Traffic Router.

CDN_name rascal-
config.txt

The human readable name of the CDN for this profile.

CoverageZoneJ-
sonURL

CRCon-
fig.xml

The location (URL) to retrieve the coverage zone map file in JSON format
from.

geoloca-
tion.polling.url

CRCon-
fig.json

The location (URL) to retrieve the geo database file from.

geoloca-
tion.polling.interval

CRCon-
fig.json

How often to refresh the coverage geo location database in ms

coverage-
zone.polling.interval

CRCon-
fig.json

How often to refresh the coverage zone map in ms

coverage-
zone.polling.url

CRCon-
fig.json

The location (URL) to retrieve the coverage zone map file in XML format
from.

domain_name CRCon-
fig.json

The top level domain of this Traffic Router instance.

tld.ttls.AAAA CRCon-
fig.json

The Time To Live (TTL) the Traffic Router DNS Server will respond with
on AAAA records.

tld.ttls.A CRCon-
fig.json

The TTL the Traffic Router DNS Server will respond with on A records.

tld.soa.expire CRCon-
fig.json

The value for the expire field the Traffic Router DNS Server will respond
with on Start of Authority (SOA) records.

tld.soa.minimum CRCon-
fig.json

The value for the minimum field the Traffic Router DNS Server will re-
spond with on SOA records.

tld.soa.admin CRCon-
fig.json

The DNS Start of Authority admin.

tld.soa.retry CRCon-
fig.json

The value for the retry field the Traffic Router DNS Server will respond
with on SOA records.

tld.soa.refresh CRCon-
fig.json

The TTL the Traffic Router DNS Server will respond with on A records.

tld.ttls.NS CRCon-
fig.json

The TTL the Traffic Router DNS Server will respond with on NS records.

tld.ttls.SOA CRCon-
fig.json

The TTL the Traffic Router DNS Server will respond with on SOA records.

api.port server.xml The TCP port Traffic Router listens on for API (REST) access.
api.cache-
control.max-age

CRCon-
fig.json

The value of the Cache-Control: max-age= header in the API re-
sponses of Traffic Router.

Delivery Service Regexp

This table defines how requests are matched to the delivery service. There are 3 type of entries possible here:

44 Chapter 3. Administrator’s Guide

Traffic Control Documentation, Release 1.1.3

Name Description DS Type Status
HOST_REGEXP This is the regular expresion to match the host part of the

URL.
DNS and
HTTP

Sup-
ported

PATH_REGEXP This is the regular expresion to match the path part of the
URL.

HTTP Beta

HEADER_REGEXP This is the regular expresion to match on any header in the
request.

HTTP Beta

The Order entry defines the order in which the regular expressions get evaluated. To support CNAMES from domains
outside of the Traffic Control top level DNS domain, enter multiple HOST_REGEXP lines.

Example: Example foo.

Note: In most cases is is sufficient to have just one entry in this table that has a HOST_REGEXP Type, and Order
0. For the movies delivery service in the Kabletown CDN, the entry is simply single HOST_REGEXP set to .*\.
movies\..*. This will match every url that has a hostname that ends with movies.cdn1.kabletown.net,
since cdn1.kabletown.net is the Kabletown CDN’s DNS domain.

Static DNS Entries

Static DNS entries allow you to create other names under the delivery service domain. You can enter any valid
hostname, and create a CNAME, A or AAAA record for it by clicking the Static DNS button at the bottom of the
delivery service details screen.

Server Assignments

Click the Server Assignments button at the bottom of the screen to assign servers to this delivery service. Servers
can be selected by drilling down in a tree, starting at the profile, then the cache group, and then the individual servers.
Traffic Router will only route traffic for this delivery service to servers that are assigned to it.

The Coverage Zone File and ASN Table

The Coverage Zone File (CZF) should contain a cachegroup name to network prefix mapping in the form:

{
"coverageZones": {
"cache-group-01": {

"network6": [
"1234:5678::\/64",
"1234:5679::\/64"

],
"network": [

"192.168.8.0\/24",
"192.168.9.0\/24"

]
}
"cache-group-02": {

"network6": [
"1234:567a::\/64",
"1234:567b::\/64"

(continues on next page)

3.1. Administrator’s Guide 45

Traffic Control Documentation, Release 1.1.3

(continued from previous page)

],
"network": [

"192.168.4.0\/24",
"192.168.5.0\/24"

]
}

}
}

The CZF is an input to the Traffic Control CDN, and as such does not get generated by Traffic Ops, but rather, it gets
consumed by Traffic Router. Some popular IP management systems output a very similar file to the CZF but in stead
of a cachegroup an ASN will be listed. Traffic Ops has the “Networks (ASNs)” view to aid with the conversion of
files like that to a Traffic Control CZF file; this table is not used anywhere in Traffic Ops, but can be used to script the
conversion using the API.

The script that generates the CZF file is not part of Traffic Control, since it is different for each situation.

Parameters and Profiles

Parameters are shared between profiles if the set of { name, config_file, value } is the same. To change
a value in one profile but not in others, the parameter has to be removed from the profile you want to change it in, and
a new parameter entry has to be created (Add Parameter button at the bottom of the Parameters view), and assigned
to that profile. It is easy to create new profiles from the Misc > Profiles view - just use the Add/Copy Profile button
at the bottom of the profile view to copy an existing profile to a new one. Profiles can be exported from one system
and imported to another using the profile view as well. It makes no sense for a parameter to not be assigned to a
single profile - in that case it really has no function. To find parameters like that use the Parameters > Orphaned
Parameters view. It is easy to create orphaned parameters by removing all profiles, or not assigning a profile directly
after creating the parameter.

See also:

Parameters an profiles in the Configuring Traffic Ops section.

Tools

Generate ISO

Queue Updates and Snapshot CRConfig

When changing delivery services special care has to be taken so that Traffic Router will not send traffic to caches for
delivery services that the cache doesn’t know about yet. In general, when adding delivery services, or adding servers
to a delivery service, it is best to update the caches before updating Traffic Router and Traffic Monitor. When deleting
delivery services, or deleting server assignments to delivery services, it is best to update Traffic Router and Traffic
Monitor first and then the caches. Updating the cache configuration is done through the Queue Updates menu, and
updating Traffic Monitor and Traffic Router config is done through the Snapshot CRConfig menu.

Queue Updates

Every 15 minutes the caches will run a syncds to get all changes needed from Traffic Ops. The files that will be updated
by the syncds job are:

• records.config

46 Chapter 3. Administrator’s Guide

Traffic Control Documentation, Release 1.1.3

• remap.config

• parent.config

• cache.config

• hosting.config

• url_sig_(.*).config

• hdr_rw_(.*).config

• regex_revalidate.config

• ip_allow.config

A cache will only get updated when the update flag is set for it. To set the update flag, use the Queue Updates menu -
here you can schedule updates for a whole CDN or a cache group:

1. Click Tools > Queue Updates.

2. Select the CDN to queueu uodates for, or All.

3. Select the cache group to queue updates for, or All

4. Click the Queue Updates button.

5. When the Queue Updates for this Server? (all) window opens, click OK.

To schedule updates for just one cache, use the “Server Checks” page, and click the in the UPD column. The

UPD column of Server Checks page will change show a when updates are pending for that cache.

Snapshot CRConfig

Every 60 seconds Traffic Monitor will check with Traffic Ops to see if a new CRConfig snapshot was made. If there is
a new CRCOnfig, it will apply it to both Traffic Monitor and Traffic Router. See rl-crconfig for more information on
the CRConfig file. To create a new snapshot, use the Tools > Snapshot CRConfig menu:

1. Click Tools > Snapshot CRConfig.

2. Verify the selection of the correct CDN from the Choose CDN drop down and click Diff CRConfig. On initial
selection of this, the CRConfig Diff window says the following:

There is no existing CRConfig for [cdn] to diff against. . . Is this the first snapshot??? If you are not sure why
you are getting this message, please do not proceed! To proceed writing the snapshot anyway click the ‘Write
CRConfig’ button below.

If there is an older version of the CRConfig, a window will pop up showing the differences between the active
CRConfig and the CRConfig about to be written.

3. Click Write CRConfig.

4. When the This will push out a new CRConfig.json. Are you sure? window opens, click OK.

5. The Successfully wrote CRConfig.json! window opens, click OK.

Invalidate Content

Invalidating content on the CDN is sometimes necessary when the origin was mis configured and something is cached
in the CDN caches that needs to be removed. Given the size of a typical Traffic Control CDN and the amount of
content that can be cached in it, removing the content from all the caches may take a long time. To speed up content

3.1. Administrator’s Guide 47

Traffic Control Documentation, Release 1.1.3

invalidation, Traffic Ops will not try to remove the content from the caches, but it makes the content in accessible
using the regex_revalidate ATS plugin. This forces a revalidation of the content, rather than a new get.

Note: This method forces a HTTP revalidation of the content, and not a new GET - the origin needs to support
revalidation according to the HTTP/1.1 specification, and send a 200 OK or 304 Not Modified as applicable.

To invalidate content:

1. Click Tools > Invalidate Content

2. Fill out the form fields:

• Select the Delivery Service

• Enter the Path Regex - this should be a PCRE compatible regular expression for the path to match for
forcing the revalidation. Be careful to only match on the content you need to remove - revalidation
is an expensive operation for many origins, and a simple /.* can cause an overload condition of the
origin.

• Enter the Time To Live - this is how long the revalidation force will be active for. It usually makes
sense to make this the same as the Cache-Control header from the origin sets the object time
to live in cache (by max-age or Expires). Entering a longer TTL here will make the caches do
unnecessary work.

• Enter the Start Time - this is the start time when the force revalidation will be made active. Is pre
populated with the current time, leave as is to schedule ASAP.

3. Click the Submit button.

Generate DNSSEC Keys

TBD

3.1.4 Managing Traffic Ops Extensions

3.1.5 Traffic Monitor Administration

Installing Traffic Monitor

The following are requirements to ensure an accurate set up:

• CentOS 6

• 4 vCPUs

• 8GB RAM

• Successful install of Traffic Ops

• Tomcat

• Administrative access to the Traffic Ops

• Physical address of the site

• perl-JSON

• perl-WWW-Curl

48 Chapter 3. Administrator’s Guide

http://www.pcre.org/

Traffic Control Documentation, Release 1.1.3

1. Enter the Traffic Monitor server into Traffic Ops

2. Make sure the FQDN of the Traffic Monitor is resolvable in DNS.

3. Install Traffic Monitor and perl mods: sudo yum -y install traffic_monitor perl-JSON
perl-WWW-Curl

4. Take the config from Traffic Ops - run : sudo /opt/traffic_monitor/bin/
traffic_monitor_config.pl

Sample output:

traffic_mon # /opt/traffic_monitor/bin/traffic_monitor_config.pl https://
→˓traffic-ops.cdn.kabletown.net admin:password prompt
DEBUG: traffic_ops selected: https://traffic-ops.cdn.kabletown.net
DEBUG: traffic_ops login: admin:kl0tevax
DEBUG: Config write mode: prompt
DEBUG: Found profile from traffic_ops: RASCAL_CDN
DEBUG: Found CDN name from traffic_ops: kabletown_cdn
DEBUG: Found location for rascal-config.txt from traffic_ops: /opt/
→˓traffic_monitor/conf
WARN: Param not in traffic_ops: allow.config.edit
→˓description: Allow the running configuration to be edited through the
→˓UI Using
→˓default value of: false
WARN: Param not in traffic_ops: default.accessControlAllowOrigin
→˓description: The value for the header: Access-Control-Allow-Origin for
→˓published jsons... should be narrowed down to TMs Using
→˓default value of: *
WARN: Param not in traffic_ops: default.connection.timeout
→˓description: Default connection time for all queries (cache, peers, TM)
→˓ Using
→˓default value of: 2000
WARN: Param not in traffic_ops: hack.forceSystemExit
→˓description: Call System.exit on shutdown
→˓ Using
→˓default value of: false
WARN: Param not in traffic_ops: hack.peerOptimistic
→˓description: The assumption of a caches availability when unknown by
→˓peers Using
→˓default value of: true
WARN: Param not in traffic_ops: hack.publishDsStates
→˓description: If true, the delivery service states will be included in
→˓the CrStates.json Using
→˓default value of: true
WARN: Param not in traffic_ops: health.ds.interval
→˓description: The polling frequency for calculating the deliveryService
→˓states Using
→˓default value of: 1000
WARN: Param not in traffic_ops: health.ds.leniency
→˓description: The amount of time before the deliveryService disregards
→˓the last update from a non-responsive cache Using
→˓default value of: 30000
WARN: Param not in traffic_ops: health.event-count
→˓description: The number of historical events that will be kept
→˓ Using
→˓default value of: 200
WARN: Param not in traffic_ops: health.polling.interval
→˓description: The polling frequency for getting the states from caches
→˓ Using
→˓default value of: 5000 (continues on next page)

3.1. Administrator’s Guide 49

Traffic Control Documentation, Release 1.1.3

(continued from previous page)

WARN: Param not in traffic_ops: health.startupMinCycles
→˓description: The number of query cycles that must be completed before
→˓this Traffic Monitor will start reporting Using
→˓default value of: 2
WARN: Param not in traffic_ops: health.timepad
→˓description: A delay between each separate cache query
→˓ Using
→˓default value of: 10
WARN: Param not in traffic_ops: peers.polling.interval
→˓description: Polling frequency for getting states from peer monitors
→˓ Using
→˓default value of: 5000
WARN: Param not in traffic_ops: peers.polling.url
→˓description: The url for current, unfiltered states from peer monitors
→˓ Using
→˓default value of: http://${hostname}/publish/CrStates?raw
WARN: Param not in traffic_ops: peers.threadPool
→˓description: The number of threads given to the pool for querying peers
→˓ Using
→˓default value of: 1
WARN: Param not in traffic_ops: tm.auth.url
→˓description: The url for the authentication form
→˓ Using
→˓default value of: https://${tmHostname}/login
WARN: Param not in traffic_ops: tm.crConfig.json.polling.url
→˓description: Url for the cr-config (json)
→˓ Using
→˓default value of: https://${tmHostname}/CRConfig-Snapshots/${cdnName}/
→˓CRConfig.json
WARN: Param not in traffic_ops: tm.healthParams.polling.url
→˓description: The url for the heath params (json)
→˓ Using
→˓default value of: https://${tmHostname}/health/${cdnName}
WARN: Param not in traffic_ops: tm.polling.interval
→˓description: The polling frequency for getting updates from TM
→˓ Using
→˓default value of: 10000
DEBUG: allow.config.edit needed in config, but does not exist in config
→˓on disk.
DEBUG: cdnName value on disk () does not match value needed in config
→˓(kabletown_cdn).
DEBUG: default.accessControlAllowOrigin needed in config, but does not
→˓exist in config on disk.
DEBUG: default.connection.timeout needed in config, but does not exist in
→˓config on disk.
DEBUG: hack.forceSystemExit needed in config, but does not exist in
→˓config on disk.
DEBUG: hack.peerOptimistic needed in config, but does not exist in config
→˓on disk.
DEBUG: hack.publishDsStates needed in config, but does not exist in
→˓config on disk.
DEBUG: health.ds.interval needed in config, but does not exist in config
→˓on disk.
DEBUG: health.ds.leniency needed in config, but does not exist in config
→˓on disk.
DEBUG: health.startupMinCycles needed in config, but does not exist in
→˓config on disk.

(continues on next page)

50 Chapter 3. Administrator’s Guide

Traffic Control Documentation, Release 1.1.3

(continued from previous page)

DEBUG: health.timepad value on disk (20) does not match value needed in
→˓config (10).
DEBUG: peers.polling.interval needed in config, but does not exist in
→˓config on disk.
DEBUG: peers.threadPool needed in config, but does not exist in config on
→˓disk.
DEBUG: tm.auth.password value on disk () does not match value needed in
→˓config (kl0tevax).
DEBUG: tm.auth.username value on disk () does not match value needed in
→˓config (admin).
DEBUG: tm.hostname value on disk () does not match value needed in config
→˓(traffic-ops.cdn.kabletown.net).
DEBUG: Proposed traffic_monitor_config:
{

"traffic_monitor_config":{
"default.accessControlAllowOrigin":"*",
"health.startupMinCycles":"2",
"tm.auth.password":"kl0tevax",
"tm.auth.url":"https://${tmHostname}/login",
"tm.healthParams.polling.url":"https://${tmHostname}/health/$

→˓{cdnName}",
"allow.config.edit":"false",
"tm.crConfig.json.polling.url":"https://${tmHostname}/CRConfig-

→˓Snapshots/${cdnName}/CRConfig.json",
"tm.auth.username":"admin",
"peers.polling.url":"http://${hostname}/publish/CrStates?raw",
"health.timepad":"10",
"hack.publishDsStates":"true",
"default.connection.timeout":"2000",
"health.ds.interval":"1000",
"peers.polling.interval":"5000",
"hack.forceSystemExit":"false",
"health.ds.leniency":"30000",
"cdnName":"kabletown_cdn",
"peers.threadPool":"1",
"tm.polling.interval":"10000",
"health.polling.interval":"5000",
"health.event-count":"200",
"hack.peerOptimistic":"true",
"tm.hostname":"traffic-ops.cdn.kabletown.net"

}
}
--
----OK to write this config to disk? (Y/n) [n]y
--
--
----OK to write this config to disk? (Y/n) [n]Y
--
DEBUG: Writing /opt/traffic_monitor/conf/traffic_monitor_config.js
traffic_mon #

5. Start Tomcat: sudo service tomcat start

Using CATALINA_BASE: /opt/tomcat
Using CATALINA_HOME: /opt/tomcat
Using CATALINA_TMPDIR: /opt/tomcat/temp
Using JRE_HOME: /usr

(continues on next page)

3.1. Administrator’s Guide 51

Traffic Control Documentation, Release 1.1.3

(continued from previous page)

Using CLASSPATH:/opt/tomcat/bin/bootstrap.jar
Using CATALINA_PID:/var/run/tomcat/tomcat.pid
Starting tomcat [OK]

6. Verify Traffic Monitor is running by pointing your browser to port 80 on the Traffic Monitor host.

Configuring Traffic Monitor

Configuration Overview

Traffic Monitor is configured using its JSON configuration file, traffic_monitor_config.js. Specify the
URL, username, password, and CDN name for the instance of Traffic Ops for which this Traffic Monitor is a member,
and start the software. Once started with the correct configuration, Traffic Monitor downloads its configuration from
Traffic Ops and begins polling caches. Once a configurable number of polling cycles completes, health protocol state
is available via RESTful JSON endpoints.

Troubleshooting and log files

Traffic Monitor log files are in /opt/traffic_monitor/var/log/, and tomcat log files are in /opt/
tomcat/logs/.

3.1.6 Traffic Router Administration

Installing Traffic Router

The following are requirements to ensure an accurate set up:

• CentOS 6

• 4 vCPUs

• 8GB RAM

• Successful install of Traffic Ops

• Successful install of Traffic Monitor

• Administrative access to the Traffic Ops

• Physical address of the site

• perl-JSON

• perl-WWW-Curl

1. Enter the Traffic Router server into Traffic Ops.

2. Make sure the FQDN of the Traffic Monitor is resolvable in DNS.

3. Install a traffic router: sudo yum install traffic_router.

4. Edit /opt/traffic_router/conf/traffic_monitor.properties and put in the correct online
Traffic Monitor(s) for your CDN.

Example:

52 Chapter 3. Administrator’s Guide

Traffic Control Documentation, Release 1.1.3

list of ips or hostnames delimited by semicolon (;)
traffic_monitor.bootstrap.hosts=traffic-mon-01.cdn.kabletown.net:80;

Instead of using the traffic_monitor.bootstrap.hosts property as a
→˓bootstrap
source before switching to ONLINE Monitors in the TrConfig, always
use the hosts listed for TrConfig and TrStates. Defaults to false.
traffic_monitor.bootstrap.local = false

traffic_monitor.properties: url that should normally point to this file
traffic_monitor.properties=file:/opt/traffic_router/conf/traffic_monitor.
→˓properties

Frequency for reloading this file
traffic_monitor.properties.reload.period=60000

5. Start Tomcat: sudo service tomcat start, and test lookups with dig and curl against that server.

6. Snapshot CRConfig

• This instantly associates production traffic on the servers. They need to be online when you change the DNS
records.

7. Add the correct DNS entries to the SOA records for the CDN on which you are working.

8. Add the servers to the NS and SOA records for your domain.

Configuring Traffic Router

1. From Misc > Profiles, verify the following:

• The Traffic Router information.

• The profile is set correctly.

• The Status is set to OFFLINE.

2. Verify the functionality of the DNS entry for the Traffic Router.

3. Click Tools > Generate ISO.

4. Complete the necessary fields.

5. Click Download ISO.

Troubleshooting and log files

Traffic Router log files are in /opt/traffic_router/var/log/, and tomcat log files are in /opt/tomcat/
logs/.

3.1. Administrator’s Guide 53

Traffic Control Documentation, Release 1.1.3

3.1.7 Traffic Stats Administration

Installing Traffic Stats

Configuring Traffic Stats

3.1.8 Traffic Server Administration

Installing Traffic Server

1. Select Servers.

2. Scroll to the bottom of the page and click Add Server.

3. Complete the Required Info: section.

4. Click Submit.

5. Click Save.

Configuring Traffic Server

All of the Traffic Server application configuration files are generated by Traffic Ops and installed by way of the
traffic_ops_ort.pl script.

traffic_ops_ort.pl The traffic_ops_ort.pl should be installed on all caches (by puppet or other non Traffic Ops means),
usually in /opt/ort. It is used to do initial install of the config files when the cache is being deployed, and to keep
the config files up to date when the cache is already in service. The usage message of the script is shown below:

$ /opt/ort/traffic_ops_ort.pl
Mon Mar 9 18:38:01 UTC 2015
Version of this script: 0.46b
====-====
Usage: ./traffic_ops_ort.pl <Mode> <Log_Level> <Traffic_Ops_URL> <Traffic_Ops_
→˓Login>

<Mode> = interactive - asks questions during config process.
<Mode> = report - prints config differences and exits.
<Mode> = badass - attempts to fix all config differences that it can.
<Mode> = syncds - syncs delivery services with what is configured in Traffic

→˓Ops.

<Log_Level> => ALL, TRACE, DEBUG, INFO, WARN, ERROR, FATAL, NONE

<Traffic_Ops_URL> = URL to 12 monkeys host. Example: https://trafficops.
→˓company.net

<Traffic_Ops_Login> => Example: 'username:password'
====-====
$

For initial configuration or when major changes (like a Profile change) need to be made, run the script in “badass
mode”. All required rpm packages will be installed, all Traffic Server config files will be fetched and installed,
and (if needed) the Traffic Server application will be restarted. Example run below:

run here

54 Chapter 3. Administrator’s Guide

Traffic Control Documentation, Release 1.1.3

For “every day changes” such as adding deliveryservices or changing records.config parameters caches should
run the script in “syncds” mode out of cron. Example crontab entry:

*/15 * * * * /opt/ort/traffic_ops_ort.pl syncds warn https://traffops.kabletown.
→˓net admin:password > /tmp/ort/syncds.log 2>&1

Note: <disclaimer on what is “hot changeable” here>

3.1.9 Traffic Vault Administration

Installing Traffic Vault

In order to successfully store private keys you will need to install Riak. The latest version of Riak can be downloaded
on the Riak website. The installation instructions for Riak can be found here.

Production is currently running version 2.0.5 of Riak, but the latest version should suffice.

Configuring Traffic Vault

The following steps were taken to configure Riak in our environments.

Riak configuration file configuration

The following steps need to be performed on each Riak server in the cluster:

• Log into riak server as root

• cd to /etc/riak/

• Update the following in riak.conf to reflect your IP:

– nodename = riak@a-host.sys.kabletown.net

– listener.http.internal = a-host.sys.kabletown.net:8098 (can be 80 - This endpoint will not work with
sec enabled)

– listener.protobuf.internal = a-host.sys.kabletown.net:8087 (can be different port if you want)

– listener.https.internal = a-host.sys.kabletown.net:8088 (can be 443)

• Updated the following conf file to point to your cert files

– ssl.certfile = /etc/riak/certs/server.crt

– ssl.keyfile = /etc/riak/certs/server.key

– ssl.cacertfile = /etc/pki/tls/certs/ca-bundle.crt

• Add a line at the bottom of the config for tlsv1

– tls_protocols.tlsv1 = on

• Once the config file has been updated restart riak

– /etc/init.d/riak restart

• Validate server is running by going to the following URL:

– https://<serverHostname>:8088/ping

3.1. Administrator’s Guide 55

http://docs.basho.com/riak/latest/downloads/
http://docs.basho.com/riak/latest/ops/building/installing/
mailto:riak@a-host.sys.kabletown.net
https:/

Traffic Control Documentation, Release 1.1.3

Riak-admin configuration

Riak-admin is a command line utility that needs to be run as root on a server in the riak cluster.

Assumptions:

• Riak 2.0.2 or greater is installed

• SSL Certificates have been generated (signed or self-signed)

• Root access to riak servers

Add admin user and riakuser to riak

• Admin user will be a super user

• Riakuser will be the application user

Login to one of the riak servers in the cluster as root (any will do)

1. Enable security

riak-admin security enable

2. Add groups

riak-admin security add-group admins

riak-admin security add-group keysusers

3. Add users

Note: username and password should be stored in
/opt/traffic_ops/app/conf/<environment>/riak.conf

riak-admin security add-user admin password=<AdminPassword>
groups=admins

riak-admin security add-user riakuser
password=<RiakUserPassword> groups=keysusers

4. Grant access for admin and riakuser

riak-admin security add-source riakuser 0.0.0.0/0 password

riak-admin security add-source admin 0.0.0.0/0 password

5. Grant privs to admins for everything

riak-admin security grant riak_kv.list_buckets,riak_kv.
list_keys,riak_kv.get,riak_kv.put,riak_kv.delete on any to
admins

6. Grant privs to keysuser for ssl, dnssec, and url_sig_keys buckets only

riak-admin security grant riak_kv.get,riak_kv.put,riak_kv.
delete on default ssl to keysusers

riak-admin security grant riak_kv.get,riak_kv.put,riak_kv.
delete on default dnssec to keysusers

riak-admin security grant riak_kv.get,riak_kv.put,riak_kv.
delete on default url_sig_keys to keysusers

56 Chapter 3. Administrator’s Guide

Traffic Control Documentation, Release 1.1.3

See also:

For more information on security in Riak, see the Riak Security documentation.

See also:

For more information on authentication and authorization in Riak, see the Riak Authentication and Authorization
documentation.

Traffic Ops Configuration

There are a couple conifgurations that are necessary in Traffic Ops.

1. Database Updates

• A new profile for Riak needs to be added to the profile table

• A new type of Riak needs to be added to the type table

• The servers in the Riak cluster need to be added to the server table

Note: profile and type data should be pre-loaded by seeds sql script.

2. Configuration updates

• /opt/traffic_ops/app/conf/<environment>/riak.conf needs to be updated to reflect the correct username
and password for accessing riak.

3.1. Administrator’s Guide 57

http://docs.basho.com/riak/2.0.4/ops/advanced/security/
http://docs.basho.com/riak/2.0.4/ops/running/authz/
http://docs.basho.com/riak/2.0.4/ops/running/authz/

Traffic Control Documentation, Release 1.1.3

58 Chapter 3. Administrator’s Guide

CHAPTER 4

Developer’s Guide

A guide to the various internal and external APIs, and a introduction for the Traffic Control developer.

4.1 Developer’s Guide

Use this guide to start developing applications that consume the Traffic Control APIs, to create extensions to Traffic
Ops, or work on Traffic Control itself.

4.1.1 Traffic Ops

Introduction

Traffic Ops uses a MySql or Postgres database to store the configuration information, and the Mojolicious framework
to generate the user interface and REST APIs.

Software Requirements

To work on Traffic Ops you need a *nix (MacOS and Linux are most commonly used) environment that has the
following installed:

• Carton 1.0.12

• Go 1.4

• Perl 5.10.1

• Git

• MySQL 5.1.52

59

http://mojolicio.us/
http://search.cpan.org/~miyagawa/Carton-v1.0.12/lib/Carton.pm
http://golang.org/doc/install

Traffic Control Documentation, Release 1.1.3

Traffic Ops Project Tree Overview

/opt/traffic_ops/app

• bin/ - Directory for scripts, cronjobs, etc.

• conf/

– /development - Development (local) specific config files.

– /misc - Miscellaneous config files.

– /production - Production specific config files.

– /test - Test (unit test) specific config files.

• db/ - Database related area.

– /migrations - Database Migration files.

• lib/

– /API - Mojo Controllers for the /API area of the application.

– /Common - Common Code between both the API and UI areas.

– /Extensions

– Fixtures/ - Test Case fixture data for the ‘to_test’ database. * /Integration - Integration Tests.

– /MojoPlugins - Mojolicious Plugins for Common Controller Code.

– Schema/ - Database Schema area. * /Result - DBIx ORM related files.

– /Test - Common Test.

– /UI - Mojo Controllers for the Traffic Ops UI itself.

– Utils/ * /Helper - Common utilities for the Traffic Ops application.

• log/ - Log directory where the development and test files are written by the app.

• public/

• css/ - Stylesheets.

• images/ - Images.

• js/ - Javascripts

• script/ - Mojo Bootstrap scripts.

• t/ - Unit Tests for the UI.

• api/ - Unit Tests for the API.

• t_integration/ - High level tests for Integration level testing.

• templates/ - Mojo Embedded Perl (.ep) files for the UI.

Perl Formatting Conventions

Perl tidy is for use in code formatting. See the following config file for formatting conventions.

60 Chapter 4. Developer’s Guide

Traffic Control Documentation, Release 1.1.3

edit a file called $HOME/.perltidyrc

l = 156
et=4
t
ci=4
st
se
vt=0
cti=0
pt=1
bt=1
sbt=1
bbt=1
nsfs
nolq
otr
aws
wls="= + - / * ."
wrs=\"= + - / * .\"
wbb =% + - * / x != == >= <= =~ < > | & **= += *= &= <<= &&= -= /= |= + >>= ||= .= %=
→˓^= x=

Database Management

The admin.pl script is for use in managing the Traffic Ops database tables. Below is an example of its usage.

$ db/admin.pl

Usage: db/admin.pl [–env (development|test|production)] [arguments]

Example: db/admin.pl --env=test reset

Purpose: This script is used to manage the database. The environments are defined in the dbconf.yml, as well as the
database names.

Arguments Description
create Execute db ‘create’ the database for the current environment.
down Roll back a single migration from the current version.
drop Execute db ‘drop’ on the database for the current environment.
redo Roll back the most recently applied migration, then run it again.
reset Execute db drop, create, load_schema, migrate on the database for the current environment.
seed Execute SQL from db/seeds.sql for loading static data.
setup Execute db drop, create, load_schema, migrate, seed on the database for the current environment.
status Print the status of all migrations.
upgrade Execute migrate then seed on the database for the current environment.

Installing The Developer Environment

To install the Traffic Ops Developer environment:

1. Clone the traffic_control repository from github.com.

2. Install the local dependencies using Carton (cpanfile).

4.1. Developer’s Guide 61

https://github.com/Comcast/traffic_control

Traffic Control Documentation, Release 1.1.3

$ cd traffic_ops/app
$ carton

3. Set up a user in MySQL.

Example:

master $ mysql
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 305
Server version: 5.6.19 Homebrew

Copyright (c) 2000, 2014, Oracle and/or its affiliates. All rights reserved.

Oracle is a registered trademark of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective
owners.

Type 'help;' or '\h' for help. Type '\c' to clear the current input
→˓statement.

mysql> create user ‘to_user’@’localhost’;
mysql> grant all on to_development.* to 'to_user'@'localhost' identified by
→˓'twelve';
mysql> grant all on to_test.* to 'to_user'@'localhost' identified by 'twelve
→˓';
mysql> grant all on to_integration.* to 'to_user'@'localhost' identified by
→˓'twelve';

4. Enter db/admin.pl --env=<enviroment name> setup to set up the traffic_ops database(s).

• Unit test database: $ db/admin.pl --env=test setup

• Development database: $ db/admin.pl --env=development setup

• Integration database: $ db use db/admin.pl --env=integration setup

The database schema should look like this:

master $ db/admin.pl --env=development setup
Using database.conf: conf/development/database.conf
Using database.conf: conf/development/database.conf
Using database.conf: conf/development/database.conf
Using database.conf: conf/development/database.conf
Using database.conf: conf/development/database.conf
Using database.conf: conf/development/database.conf
Executing 'drop database to_development'
Executing 'create database to_development'
Creating database tables...
Warning: Using a password on the command line interface can be insecure.
Migrating database...
goose: migrating db environment 'development', current version: 0, target:
→˓20150210100000
OK 20141222103718_extension.sql
OK 20150108100000_add_job_deliveryservice.sql
OK 20150205100000_cg_location.sql
OK 20150209100000_cran_to_asn.sql
OK 20150210100000_ds_keyinfo.sql

(continues on next page)

62 Chapter 4. Developer’s Guide

Traffic Control Documentation, Release 1.1.3

(continued from previous page)

Seeding database...
Warning: Using a password on the command line interface can be insecure.

5. (Optional) To load temporary data into the tables: $ perl bin/db/setup_kabletown.pl

6. To start Traffic Ops, enter $ bin/start.sh

The local Traffic Ops instance uses an open source framework called morbo, starting following the start com-
mand execution.

Start up success includes the following:

[2015-02-24 10:44:34,991] [INFO] Listening at "http://*:3000".

Server available at http://127.0.0.1:3000.

7. Using a browser, navigate to the given address: http://127.0.0.1:3000

8. For the initial log in:

• User name: admin

• Password: password

9. Change the log in information.

Test Cases

Use prove to execute test cases. Execute after a carton install:

• To run the Unit Tests: $ local/bin/prove -qrp t/

• To run the Integration Tests: $ local/bin/prove -qrp t_integration/

The KableTown CDN example

The integration tests will load an example CDN with most of the features of Traffic Control being used. This is mostly
for testing purposes, but can also be used as an example of how to configure certain features. To load the KableTown
CDN example and access it:

1. Run the integration tests

2. Start morbo against the integration database: export MOJO_MODE=integration; ./bin/start.sh

3. Using a browser, navigate to the given address: http://127.0.0.1:3000

4. For the initial log in:

• User name: admin

• Password: password

Extensions

Traffic Ops Extensions are a way to enhance the basic functionality of Traffic Ops in a custom manner. There are three
types of extensions:

1. Check Extensions

4.1. Developer’s Guide 63

Traffic Control Documentation, Release 1.1.3

These allow you to add custom checks to the “Health->Server Checks” view.

2. Configuration Extensions

These allow you to add custom configuration file generators.

3. Data source Extensions

These allow you to add statistic sources for the graph views and APIs.

Extensions are managed using the $TO_HOME/bin/extensions command line script. For more information see Man-
aging Traffic Ops Extensions.

Check Extensions

In other words, check extensions are scripts that, after registering with Traffic Ops, have a column reserved in the
“Health->Server Checks” view and that usually run periodically out of cron.

It is the responsibility of the check extension script to iterate over the servers it wants to check and post the

results. A check extension can have a column of ‘s and ‘s (CHECK_EXTENSION_BOOL) or a col-
umn that shows a number (CHECK_EXTENSION_NUM). A simple example of a check extension of type
CHECK_EXTENSION_NUM that will show 99.33 for all servers of type EDGE is shown below:

Script here.

Check Extension scripts are located in the $TO_HOME/bin/checks directory.

Currently, the following Check Extensions are available and installed by default:

Cache Disk Usage Check - CDU This check shows how much of the available total cache disk is in use. A “warm”
cache should show 100.00.

Cache Hit Ratio Check - CHR The cache hit ratio for the cache in the last 15 minutes (the interval is determined by
the cron entry).

DiffServe CodePoint Check - DSCP Checks if the returning traffic from the cache has the correct DSCP value as
assigned in the delivery service. (Some routers will overwrite DSCP)

Maximum Transmission Check - MTU Checks if the Traffic Ops host (if that is the one running the check) can send
and receive 8192 size packets to the ip_address of the server in the server table.

Operational Readiness Check - ORT See Configuring Traffic Server for more information on the ort script. The
ORT column shows how many changes the traffic_ops_ort.pl script would apply if it was run. The number in
this column should be 0.

Ping Check - 10G, ILO, 10G6, FQDN The bin/checks/ToPingCheck.pl is to check basic IP connectivity, and in the
default setup it checks IP connectivity to the following:

10G Is the ip_address (the main IPv4 address) from the server table pingable?

ILO Is the ilo_ip_address (the lights-out-mangement IPv4 address) from the server table pingable?

10G6 Is the ip6_address (the main IPv6 address) from the server table pingable?

FQDN Is the Fully Qualified Domain name (the concatenation of host_name and . and domain_name
from the server table) pingable?

Traffic Router Check - RTR

64 Chapter 4. Developer’s Guide

Traffic Control Documentation, Release 1.1.3

Configuration Extensions

NOTE: Config Extensions are Beta at this time.

Data source Extensions

NOTE: Data source Extensions are Beta at this time.

API

The Traffic Ops API provides programmatic access to read and write CDN data providing authorized API consumers
with the ability to monitor CDN performance and configure CDN settings and parameters.

Response Structure

All successful responses have the following structure:

{
"response": <JSON object with main response>,
"version": "1.1"

}

To make the documentation easier to read, only the <JSON object with main response> is documented,
even though the response and version fields are always present.

Using API Endpoints

1. Authenticate with your Traffic Portal or Traffic Ops user account credentials.

2. Upon successful user authentication, note the mojolicious cookie value in the response headers.

3. Pass the mojolicious cookie value, along with any subsequent calls to an authenticated API endpoint.

Example:

[jvd@laika ~]$ curl -H "Accept: application/json" http://localhost:3000/api/1.1/usage/
→˓asns.json
{"version":"1.1","alerts":[{"level":"error","text":"Unauthorized, please log in."}]}
[jvd@laika ~]$
[jvd@laika ~]$ curl -v -H "Accept: application/json" -v -X POST --data '{ "u":"admin",
→˓ "p":"secret_passwd" }' http://localhost:3000/api/1.1/user/login

* Hostname was NOT found in DNS cache

* Trying ::1...

* connect to ::1 port 3000 failed: Connection refused

* Trying 127.0.0.1...

* Connected to localhost (127.0.0.1) port 3000 (#0)
> POST /api/1.1/user/login HTTP/1.1
> User-Agent: curl/7.37.1
> Host: localhost:3000
> Accept: application/json
> Content-Length: 32
> Content-Type: application/x-www-form-urlencoded
>

(continues on next page)

4.1. Developer’s Guide 65

Traffic Control Documentation, Release 1.1.3

(continued from previous page)

* upload completely sent off: 32 out of 32 bytes
< HTTP/1.1 200 OK
< Connection: keep-alive
< Access-Control-Allow-Methods: POST,GET,OPTIONS,PUT,DELETE
< Access-Control-Allow-Origin: http://localhost:8080
< Access-Control-Allow-Headers: Origin, X-Requested-With, Content-Type, Accept
< Set-Cookie: mojolicious=eyJleHBpcmVzIjoxNDI5NDAyMjAxLCJhdXRoX2RhdGEiOiJhZG1pbiJ9--
→˓f990d03b7180b1ece97c3bb5ca69803cd6a79862; expires=Sun, 19 Apr 2015 00:10:01 GMT;
→˓path=/; HttpOnly
< Content-Type: application/json
< Date: Sat, 18 Apr 2015 20:10:01 GMT
< Access-Control-Allow-Credentials: true
< Content-Length: 81
< Cache-Control: no-cache, no-store, max-age=0, must-revalidate

* Server Mojolicious (Perl) is not blacklisted
< Server: Mojolicious (Perl)
<

* Connection #0 to host localhost left intact
{"alerts":[{"level":"success","text":"Successfully logged in."}],"version":"1.1"}
[jvd@laika ~]$

[jvd@laika ~]$ curl -H'Cookie:
→˓mojolicious=eyJleHBpcmVzIjoxNDI5NDAyMjAxLCJhdXRoX2RhdGEiOiJhZG1pbiJ9--
→˓f990d03b7180b1ece97c3bb5ca69803cd6a79862;' -H "Accept: application/json" http://
→˓localhost:3000/api/1.1/asns.json
{"response":{"asns":[{"lastUpdated":"2012-09-17 15:41:22", .. asn data deleted .. ,
→˓"version":"1.1"}
[jvd@laika ~]$

API Errors

Response Properties

Parameter Type Description
alerts array A collection of alert messages.
>level string Success, info, warning or error.
>text string Alert message.
version string

The 3 most common errors returned by Traffic Ops are:

401 Unauthorized When you don’t supply the right cookie, this is the response.

[jvd@laika ~]$ curl -v -H "Accept: application/json" http://localhost:3000/api/1.
→˓1/usage/asns.json

* Hostname was NOT found in DNS cache

* Trying ::1...

* connect to ::1 port 3000 failed: Connection refused

* Trying 127.0.0.1...

* Connected to localhost (127.0.0.1) port 3000 (#0)
> GET /api/1.1/usage/asns.json HTTP/1.1
> User-Agent: curl/7.37.1
> Host: localhost:3000
> Accept: application/json

(continues on next page)

66 Chapter 4. Developer’s Guide

Traffic Control Documentation, Release 1.1.3

(continued from previous page)

>
< HTTP/1.1 401 Unauthorized
< Cache-Control: no-cache, no-store, max-age=0, must-revalidate
< Content-Length: 84

* Server Mojolicious (Perl) is not blacklisted
< Server: Mojolicious (Perl)
< Connection: keep-alive
< Access-Control-Allow-Methods: POST,GET,OPTIONS,PUT,DELETE
< Access-Control-Allow-Headers: Origin, X-Requested-With, Content-Type, Accept
< Access-Control-Allow-Origin: http://localhost:8080
< Date: Sat, 18 Apr 2015 20:36:12 GMT
< Content-Type: application/json
< Access-Control-Allow-Credentials: true
<

* Connection #0 to host localhost left intact
{"version":"1.1","alerts":[{"level":"error","text":"Unauthorized, please log in."}
→˓]}
[jvd@laika ~]$

404 Not Found When the resource (path) is non existant Traffic Ops returns a 404:

[jvd@laika ~]$ curl -v -H'Cookie:
→˓mojolicious=eyJleHBpcmVzIjoxNDI5NDAyMjAxLCJhdXRoX2RhdGEiOiJhZG1pbiJ9--
→˓f990d03b7180b1ece97c3bb5ca69803cd6a79862;' -H "Accept: application/json" http://
→˓localhost:3000/api/1.1/asnsjj.json

* Hostname was NOT found in DNS cache

* Trying ::1...

* connect to ::1 port 3000 failed: Connection refused

* Trying 127.0.0.1...

* Connected to localhost (127.0.0.1) port 3000 (#0)
> GET /api/1.1/asnsjj.json HTTP/1.1
> User-Agent: curl/7.37.1
> Host: localhost:3000
> Cookie: mojolicious=eyJleHBpcmVzIjoxNDI5NDAyMjAxLCJhdXRoX2RhdGEiOiJhZG1pbiJ9--
→˓f990d03b7180b1ece97c3bb5ca69803cd6a79862;
> Accept: application/json
>
< HTTP/1.1 404 Not Found

* Server Mojolicious (Perl) is not blacklisted
< Server: Mojolicious (Perl)
< Content-Length: 75
< Cache-Control: no-cache, no-store, max-age=0, must-revalidate
< Content-Type: application/json
< Date: Sat, 18 Apr 2015 20:37:43 GMT
< Access-Control-Allow-Credentials: true
< Set-Cookie:
→˓mojolicious=eyJleHBpcmVzIjoxNDI5NDAzODYzLCJhdXRoX2RhdGEiOiJhZG1pbiJ9--
→˓8a5a61b91473bc785d4073fe711de8d2c63f02dd; expires=Sun, 19 Apr 2015 00:37:43 GMT;
→˓ path=/; HttpOnly
< Access-Control-Allow-Methods: POST,GET,OPTIONS,PUT,DELETE
< Connection: keep-alive
< Access-Control-Allow-Headers: Origin, X-Requested-With, Content-Type, Accept
< Access-Control-Allow-Origin: http://localhost:8080
<

* Connection #0 to host localhost left intact
{"version":"1.1","alerts":[{"text":"Resource not found.","level":"error"}]}
[jvd@laika ~]$

4.1. Developer’s Guide 67

Traffic Control Documentation, Release 1.1.3

500 Internal Server Error When you are asking for a correct path, but the database doesn’t match, it returns a 500:

[jvd@laika ~]$ curl -v -H'Cookie:
→˓mojolicious=eyJleHBpcmVzIjoxNDI5NDAyMjAxLCJhdXRoX2RhdGEiOiJhZG1pbiJ9--
→˓f990d03b7180b1ece97c3bb5ca69803cd6a79862;' -H "Accept: application/json" http://
→˓localhost:3000/api/1.1/servers/hostname/jj/details.json

* Hostname was NOT found in DNS cache

* Trying ::1...

* connect to ::1 port 3000 failed: Connection refused

* Trying 127.0.0.1...

* Connected to localhost (127.0.0.1) port 3000 (#0)
> GET /api/1.1/servers/hostname/jj/details.json HTTP/1.1
> User-Agent: curl/7.37.1
> Host: localhost:3000
> Cookie: mojolicious=eyJleHBpcmVzIjoxNDI5NDAyMjAxLCJhdXRoX2RhdGEiOiJhZG1pbiJ9--
→˓f990d03b7180b1ece97c3bb5ca69803cd6a79862;
> Accept: application/json
>
< HTTP/1.1 500 Internal Server Error

* Server Mojolicious (Perl) is not blacklisted
< Server: Mojolicious (Perl)
< Cache-Control: no-cache, no-store, max-age=0, must-revalidate
< Content-Length: 93
< Set-Cookie:
→˓mojolicious=eyJhdXRoX2RhdGEiOiJhZG1pbiIsImV4cGlyZXMiOjE0Mjk0MDQzMDZ9--
→˓1b08977e91f8f68b0ff5d5e5f6481c76ddfd0853; expires=Sun, 19 Apr 2015 00:45:06 GMT;
→˓ path=/; HttpOnly
< Content-Type: application/json
< Date: Sat, 18 Apr 2015 20:45:06 GMT
< Access-Control-Allow-Credentials: true
< Access-Control-Allow-Methods: POST,GET,OPTIONS,PUT,DELETE
< Connection: keep-alive
< Access-Control-Allow-Headers: Origin, X-Requested-With, Content-Type, Accept
< Access-Control-Allow-Origin: http://localhost:8080
<

* Connection #0 to host localhost left intact
{"alerts":[{"level":"error","text":"An error occurred. Please contact your
→˓administrator."}]}
[jvd@laika ~]$

The rest of the API documentation will only document the 200 OK case, where no errors have occured.

API 1.1 Reference

ASN

GET /api/1.1/asns.json

Authentication Required: Yes

Response Properties

68 Chapter 4. Developer’s Guide

Traffic Control Documentation, Release 1.1.3

Parameter Type Description
asns array A collection of asns
>lastUpdated string The Time / Date this server entry was last updated
>id string Local unique identifier for the ASN
>asn string Autonomous System Numbers per APNIC for identifying a service

provider.
>cachegroup string Related cachegroup name

Response Example

{
"response": {

"asns": [
{

"lastUpdated": "2012-09-17 21:41:22",
"id": "27",
"asn": "7015",
"cachegroup": "us-ma-woburn"

},
{

"lastUpdated": "2012-09-17 21:41:22",
"id": "28",
"asn": "7016",
"cachegroup": "us-pa-pittsburgh"

}
]

},
"version": "1.1"
}

Cache Group

GET /api/1.1/cachegroups.json

Authentication Required: Yes

Response Properties

Parameter Type Description
longitude string Longitude for the Cache Group
parentCachegroupId string Identifier that refers to the ‘id’ field of different Cache Group

entry.
lastUpdated string The Time / Date this entry was last updated
typeName string The name of the type of Cache Group entry
name string The name of the Cache Group entry
typeId string Unique identifier for the ‘Type’ of Cache Group entry
latitude string Latitude for the Cache Group
id string Local unique identifier for the Cache Group
shortName string Abbreviation of the Cache Group Name

Response Example

4.1. Developer’s Guide 69

Traffic Control Documentation, Release 1.1.3

{
"response": [

{
"longitude": "0",
"parentCachegroupId": null,
"lastUpdated": "2012-09-25 20:27:28",
"typeName": "MID_LOC",
"name": "dc-chicago",
"parentCachegroupName": null,
"typeId": "4",
"latitude": "0",
"id": "21",
"shortName": "dcchi"

},
{

"longitude": "0",
"parentCachegroupId": null,
"lastUpdated": "2012-09-25 20:32:03",
"typeName": "MID_LOC",
"name": "dc-cmc",
"parentCachegroupName": null,
"typeId": "4",
"latitude": "0",
"id": "22",
"shortName": "dccmc"

}
],
"version": "1.1"
}

GET /api/1.1/cachegroups/trimmed.json

Authentication Required: Yes

Response Properties

Parameter Type Description
name string

Response Example

{
"response": [

{
"name": "dc-chicago"

},
{

"name": "dc-cmc"
}

],
"version": "1.1"

}

70 Chapter 4. Developer’s Guide

Traffic Control Documentation, Release 1.1.3

GET /api/1.1/cachegroup/:parameter_id/parameter.json

Authentication Required: Yes

Request Route Parameters

Name Required Description
parameter_id yes

Response Properties

Parameter Type Description
cachegroups array
>name string
>id string

Response Example

{
"response": {

"cachegroups": [
{

"name": "dc-chicago",
"id": "21"

},
{

"name": "dc-cmc",
"id": "22"

}
]

},
"version": "1.1"
}

GET /api/1.1/cachegroupparameters.json

Authentication Required: Yes

Response Properties

Parameter Type Description
cachegroupParameters array A collection of cache group parameters.
>parameter string
>last_updated string
>cachegroup string

Response Example

{
"response": {

"cachegroupParameters": [
{

(continues on next page)

4.1. Developer’s Guide 71

Traffic Control Documentation, Release 1.1.3

(continued from previous page)

"parameter": "379",
"last_updated": "2013-08-05 18:49:37",
"cachegroup": "us-ca-sanjose"

},
{

"parameter": "380",
"last_updated": "2013-08-05 18:49:37",
"cachegroup": "us-ca-sanjose"

},
{

"parameter": "379",
"last_updated": "2013-08-05 18:49:37",
"cachegroup": "us-ma-woburn"

}
]

},
"version": "1.1"
}

GET /api/1.1/cachegroups/:parameter_id/parameter/available.json

Authentication Required: Yes

Request Route Parameters

Name Required Description
parameter_id yes

Response Properties

Parameter Type Description
name
id

Response Example

{
"response": [

{
"name": "dc-chicago",
"id": "21"

},
{

"name": "dc-cmc",
"id": "22"

}
],
"version": "1.1"
}

72 Chapter 4. Developer’s Guide

Traffic Control Documentation, Release 1.1.3

CDN

Health

GET /api/1.1/cdns/health.json

Authentication Required: Yes

Response Properties

Parameter Type Description
totalOnline int Total number of online caches across all CDNs.
totalOffline int Total number of offline caches across all CDNs.
cachegroups array A collection of cache groups.
>online int The number of online caches for the cache group
>offline int The number of offline caches for the cache group.
>name string Cache group name.

Response Example

{
"response": {

"totalOnline": 148,
"totalOffline": 0,
"cachegroups": [

{
"online": 8,
"offline": 0,
"name": "us-co-denver"

},
{

"online": 7,
"offline": 0,
"name": "us-de-newcastle"

}
]

},
"version": "1.1"
}

GET /api/1.1/cdns/:name/health.json

Retrieves the health of all locations (cache groups) for a given CDN.

Authentication Required: Yes

Request Route Parameters

Name Required Description
name yes

Response Properties

4.1. Developer’s Guide 73

Traffic Control Documentation, Release 1.1.3

Parameter Type Description
totalOnline int Total number of online caches

across the specified CDN.
totalOffline int Total number of offline caches

across the specified CDN.
cachegroups array A collection of cache groups.
>online int The number of online caches for

the cache group
>offline int The number of offline caches

for the cache group.

• name string Cache group name.

Response Example

{
"response": {

"totalOnline": 148,
"totalOffline": 0,
"cachegroups": [

{
"online": 8,
"offline": 0,
"name": "us-co-denver"

},
{

"online": 7,
"offline": 0,
"name": "us-de-newcastle"

}
]

},
"version": "1.1"
}

GET /api/1.1/cdns/usage/overview.json

Retrieves the high-level CDN usage metrics.

Authentication Required: Yes

Response Properties

Parameter Type Description
currentGbps number
tps int
maxGbps int

Response Example

74 Chapter 4. Developer’s Guide

Traffic Control Documentation, Release 1.1.3

{
"response": {

"currentGbps": 149.368167,
"tps": 36805,
"maxGbps": 3961

},
"version": "1.1"
}

GET /api/1.1/cdns/capacity.json

Retrieves the aggregate capacity percentages of all locations (cache groups) for a given CDN.

Response Properties

Parameter Type Description
availablePercent number
unavailablePercent number
utilizedPercent number
maintenancePercent number

Response Example

{
"response": {

"availablePercent": 89.0939840205533,
"unavailablePercent": 0,
"utilizedPercent": 10.9060020300395,
"maintenancePercent": 0.0000139494071146245

},
"version": "1.1"
}

Routing

GET /api/1.1/cdns/routing.json

Authentication Required: Yes

Retrieves the aggregate routing percentages of all locations (cache groups) for a given CDN.

Response Properties

Parameter Type Description
staticRoute number Used pre-configured DNS entries.
miss number No location available for client IP.
geo number Used 3rd party geo-IP mapping.
err number Error localizing client IP.
cz number Used Coverage Zone geo-IP mapping.
dsr number Overflow traffic sent to secondary CDN.

Response Example

4.1. Developer’s Guide 75

Traffic Control Documentation, Release 1.1.3

{
"response": {

"staticRoute": 0,
"miss": 0,
"geo": 37.8855391018869,
"err": 0,
"cz": 62.1144608981131,
"dsr": 0

},
"version": "1.1"

}

Metrics

GET /api/1.1/cdns/metric_types/:metric/start_date/:start/end_date/:end.json

Authentication Required: Yes

Retrieves edge metrics of one or all locations (cache groups).

Request Route Parameters

Name Required Description
metric_type yes ooff, origin_tps
start yes UNIX time, yesterday, now
end yes UNIX time, yesterday, now

Response Properties

Parameter Type Description
stats hash
>count string
>98thPercentile string
>min string
>max string
>5thPercentile string
>95thPercentile string
>mean string
>sum string
data array
>time int
>value number
label string

Response Example

{
"response": [

{

(continues on next page)

76 Chapter 4. Developer’s Guide

Traffic Control Documentation, Release 1.1.3

(continued from previous page)

"stats": {
"count": 1,
"98thPercentile": 1668.03,
"min": 1668.03,
"max": 1668.03,
"5thPercentile": 1668.03,
"95thPercentile": 1668.03,
"mean": 1668.03,
"sum": 1668.03

},
"data": [

[
1425135900000,
1668.03

],
[

1425136200000,
null

]
],
"label": "Origin TPS"

}
],
"version": "1.1"
}

Domains

GET /api/1.1/cdns/domains.json

Authentication Required: Yes

Response Properties

Parameter Type Description
profileId string
parameterId string
profileName string
profileDescription string
domainName string

Response Example

{
"response": [

{
"profileId": "5",
"parameterId": "404",
"profileName": "CR_FOO",
"profileDescription": "Comcast Content Router for foo.domain.net",

(continues on next page)

4.1. Developer’s Guide 77

Traffic Control Documentation, Release 1.1.3

(continued from previous page)

"domainName": "foo.domain.net"
},
{

"profileId": "8",
"parameterId": "405",
"profileName": "CR_BAR",
"profileDescription": "Comcast Content Router for bar.domain.net",
"domainName": "bar.domain.net"

}
],
"version": "1.1"
}

Topology

GET /api/1.1/cdns/:cdn_name/configs.json

Retrieves CDN config information.

Authentication Required: Yes

Request Route Parameters

Name Required Description
cdn_name yes Your cdn name or, all

Response Properties

Parameter Type Description
id string
value string
name string
config_file string

Response Example

TBD

GET /api/1.1/cdns/:name/configs/monitoring.json

Retrieves CDN monitoring information.

Authentication Required: Yes

Request Route Parameters

78 Chapter 4. Developer’s Guide

Traffic Control Documentation, Release 1.1.3

Name Required Description
name yes

Response Properties

Parameter Type Description
trafficServers array A collection of Traffic Servers.
>profile string
>ip string
>status string
>cacheGroup string
>ip6 string
>port int
>hostName string
>fqdn string
>interfaceName string
>type string
>hashId string
cacheGroups array A collection of cache groups.
>coordinates hash
>>longitude number
>>latitude number
>name string
config hash
>hack.ttl int
>tm.healthParams.polling.url string
>tm.dataServer.polling.url string
>health.timepad int
>tm.polling.interval int
>health.threadPool int
>health.polling.interval int
>health.event-count int
>tm.crConfig.polling.url number
>CDN_name number
trafficMonitors array A collection of Traffic Monitors.
>profile string
>location string
>ip string
>status string
>ip6 string
>port int
>hostName string
>fqdn string
deliveryServices array A collection of delivery services.
>xmlId string
>totalTpsThreshold int
>status string
>totalKbpsThreshold int
profiles array A collection of profiles.
>parameters hash

Continued on next page

4.1. Developer’s Guide 79

Traffic Control Documentation, Release 1.1.3

Table 1 – continued from previous page
Parameter Type Description
>>health.connection.timeout int
>>health.polling.url string
>>health.threshold.queryTime int
>>history.count int
>>health.threshold.availableBandwidthInKbps string
>>health.threshold.loadavg string
>name string
>type string

Response Example

TBD

GET /api/1.1/cdns/:name/configs/routing.json

Retrieves CDN routing information.

Authentication Required: Yes

Request Route Parameters

Name Required Description
name yes

Response Properties

Parameter Type Description
trafficServers array A collection of Traffic Servers.
>profile string
>ip string
>status string
>cacheGroup string
>ip6 string
>port int
>deliveryServices array
>>xmlId string
>>remaps array
>>hostName string
>fqdn string
>interfaceName string
>type string
>hashId string
stats hash
>trafficOpsPath string
>cdnName string
>trafficOpsVersion string

Continued on next page

80 Chapter 4. Developer’s Guide

Traffic Control Documentation, Release 1.1.3

Table 2 – continued from previous page
Parameter Type Description
>trafficOpsUser string
>date int
>trafficOpsHost string
cacheGroups array A collection of cache groups.
>coordinates hash
>>longitude number
>>latitude number
>name string
config hash
>tld.soa.admin string
>tcoveragezone.polling.interval int
>geolocation.polling.interval int
>tld.soa.expire int
>coveragezone.polling.url string
>tld.soa.minimum int
>geolocation.polling.url string
>domain_name string
>tld.ttls.AAAA int
>tld.soa.refresh int
>tld.ttls.NS int
>tld.ttls.SOA int
>geolocation6.polling.interval int
>tld.ttls.A int
>tld.soa.retry int
>geolocation6.polling.url string
trafficMonitors array A collection of Traffic Monitors.
>profile string
>location string
>ip string
>status string
>ip6 string
>port int
>hostName string
>fqdn string
deliveryServices array A collection of delivery services.
>xmlId string
>ttl int
>geoEnabled string
>coverageZoneOnly boolean
>matchSets array
>>protocol string
>>matchList array
>>>regex string
>>>matchType string
>bypassDestination hash
>>maxDnsIpsForLocation int
>>ttl int
>>type string
>ttls hash

Continued on next page

4.1. Developer’s Guide 81

Traffic Control Documentation, Release 1.1.3

Table 2 – continued from previous page
Parameter Type Description
>>A int
>>SOA int
>>NS int
>>AAAA int
>missCoordinates hash
>>longitude number
>>latitude number
>soa hash
>>admin string
>>retry int
>>minimum int
>>refresh int
>>expire int
trafficRouters hash
>profile int
>location string
>ip string
>status string
>ip6 string
>port int
>hostName string
>fqdn string
>apiPort int

Response Example

:: TBD

DNSSEC Keys

GET /api/1.1/cdns/name/:name/dnsseckeys.json

Gets a list of dnsseckeys for CDN and all associated Delivery Services. Before returning response to user,
check to make sure keys aren’t expired. If they are expired, generate new ones. Before returning response
to user, make sure dnssec keys for all delivery services exist. If they don’t exist, create them.

Authentication Required: Yes

Role Required: Admin

Request Route Parameters

Name Required Description
name yes

Response Properties

82 Chapter 4. Developer’s Guide

Traffic Control Documentation, Release 1.1.3

Parameter Type Description
cdn name/ds xml_id string identifier for ds or cdn
>zsk/ksk array collection of zsk/ksk data
>>ttl string time-to-live for dnssec requests
>>inceptionDate string epoch timestamp for when the keys were created
>>expirationDate string epoch timestamp representing the expiration of the keys
>>private string encoded private key
>>public string encoded public key
>>name string domain name
version string API version

Response Example

{
"response": {

"cdn1": {
"zsk": {
"ttl": "60",
"inceptionDate": "1426196750",
"private": "zsk private key",
"public": "zsk public key",
"expirationDate": "1428788750",
"name": "foo.kabletown.com."

},
"ksk": {
"name": "foo.kabletown.com.",
"expirationDate": "1457732750",
"public": "ksk public key",
"private": "ksk private key",
"inceptionDate": "1426196750",
"ttl": "60"

}
},
"ds-01": {

"zsk": {
"ttl": "60",
"inceptionDate": "1426196750",
"private": "zsk private key",
"public": "zsk public key",
"expirationDate": "1428788750",
"name": "ds-01.foo.kabletown.com."

},
"ksk": {
"name": "ds-01.foo.kabletown.com.",
"expirationDate": "1457732750",
"public": "ksk public key",
"private": "ksk private key",
"inceptionDate": "1426196750"

}
},
... repeated for each ds in the cdn

},
"version": "1.1"

}

4.1. Developer’s Guide 83

Traffic Control Documentation, Release 1.1.3

GET /api/1.1/cdns/name/:name/dnsseckeys/delete.json

Delete dnssec keys for a cdn and all associated delivery services.

Authentication Required: Yes

Role Required: Admin

Request Route Parameters

Name Required Description
name yes name of the CDN for which you want to delete dnssec keys

Response Properties

Parameter Type Description
response string success response

Response Example

{
"version": "1.1",
"response": "Successfully deleted dnssec keys for <cdn>"

}

POST /api/1.1/deliveryservices/dnsseckeys/generate

Generates zsk and ksk keypairs for a cdn and all associated delivery services.

Authentication Required: Yes

Role Required: Admin

Request Properties

Parameter Type Description
key string name of the cdn
name string domain name of the cdn
ttl string time to live
kskExpirationDays string Expiration (in days) for the key signing keys
zskExpirationDays string Expiration (in days) for the zone signing keys

Request Example

{
"key": "cdn1",
"name" "ott.kabletown.com",
"ttl": "60",
"kskExpirationDays": "365",

(continues on next page)

84 Chapter 4. Developer’s Guide

Traffic Control Documentation, Release 1.1.3

(continued from previous page)

"zskExpirationDays": "90"
}

Response Properties

Parameter Type Description
response string response string
version string API version

Response Example

{
"version": "1.1",
"response": "Successfully created dnssec keys for cdn1"

}

Change Logs

GET /api/1.1/logs.json

Response Properties

Parameter Type Description
ticketNum string Optional field to cross reference with any bug tracking systems
level string Log categories for each entry, examples: ‘UICHANGE’, ‘OPER’,

‘APICHANGE’.
lastUpdated string Local unique identifier for the Log
user string Current user who made the change that was logged
id string Local unique identifier for the Log entry
message string Log detail about what occurred

Response Example

{
"response": [

{
"ticketNum": null,
"level": "OPER",
"lastUpdated": "2015-02-04 22:59:13",
"user": "mtorlu9137e",
"id": "22661",
"message": "Snapshot CRConfig created."

},
{

"ticketNum": null,
"level": "APICHANGE",
"lastUpdated": "2015-02-03 17:04:20",
"user": "admin",
"id": "22658",
"message": "Update server odol-atsec-nyc-23.kbaletown.net

→˓status=REPORTED"
},

(continues on next page)

4.1. Developer’s Guide 85

Traffic Control Documentation, Release 1.1.3

(continued from previous page)

],
"version": "1.1"
}

GET /api/1.1/logs/:days/days.json

Request Route Parameters

Name Required Description
days yes Number of days.

Response Properties

Parameter Type Description
ticketNum string
level string
lastUpdated string
user string
id string
message string

Response Example

{
"response": [

{
"ticketNum": null,
"level": "OPER",
"lastUpdated": "2015-02-04 22:59:13",
"user": "mtorlu9137e",
"id": "22661",
"message": "Snapshot CRConfig created."

},
{

"ticketNum": null,
"level": "APICHANGE",
"lastUpdated": "2015-02-03 17:04:20",
"user": "admin",
"id": "22658",
"message": "Update server odol-atsec-nyc-23.kabletown.net

→˓status=REPORTED"
}

],
"version": "1.1"
}

86 Chapter 4. Developer’s Guide

Traffic Control Documentation, Release 1.1.3

GET /api/1.1/logs/newcount.json

Response Properties

Parameter Type Description
newLogcount string

Response Example

{
"response": {

"newLogcount": 0
},
"version": "1.1"
}

Delivery Service

GET /api/1.1/deliveryservices.json

Retrieves all delivery services. See also Using Traffic Ops - Delivery Service.

Authentication Required: Yes

Response Properties

Parameter Type Description
active bool true if active, false if inactive

(inact).
cacheurl string Cache URL rule to apply to this

delivery service.
protocol string

• 0: serve with http:// at
EDGE

• 1: serve with https:// at
EDGE

• 2: serve with both http://
and https:// at EDGE

ccrDnsTtl string The TTL of the DNS response
for A or AAAA queries request-
ing the IP address of the tr. host.

checkPath string The path portion of the URL
to check this deliveryservice for
health.

dnsBypassIp string The IPv4 IP to use for bypass
on a DNS deliveryservice - by-
pass starts when serving more
than the globalMaxMbps traffic
on this deliveryservice.

Continued on next page

4.1. Developer’s Guide 87

http://traffic-control-cdn.net/docs/latest/admin/traffic_ops_using.html#delivery-service
http://
https://
http://
https://

Traffic Control Documentation, Release 1.1.3

Table 3 – continued from previous page
Parameter Type Description
dnsBypassIp6 string The IPv6 IP to use for bypass

on a DNS deliveryservice - by-
pass starts when serving more
than the globalMaxMbps traffic
on this deliveryservice.

dnsBypassTtl string The TTL of the DNS bypass re-
sponse.

dscp string The Differentiated Services
Code Point (DSCP) with which
to mark downstream (EDGE ->
customer) traffic.

edgeHeaderRewrite string The EDGE header rewrite ac-
tions to perform.

geoLimit string
• 0: None - no limitations
• 1: Only route on CZF file

hit
• 2: Only route on CZF hit

or when from USA
Note that this does not prevent
access to content or makes con-
tent secure; it just prevents rout-
ing to the content by Traffic
Router.

globalMaxMbps string The maximum global band-
width allowed on this delivery-
service. If exceeded, the traffic
routes to the dnsByPassIp* for
DNS deliveryservices and to the
httpBypassFqdn for HTTP de-
liveryservices.

globalMaxTps string The maximum global transac-
tions per second allowed on this
deliveryservice. When this is
exceeded traffic will be sent to
the dnsByPassIp* for DNS de-
liveryservices and to the http-
BypassFqdn for HTTP deliv-
eryservices

headerRewrite string The EDGE header rewrite ac-
tions to perform.

httpBypassFqdn string The HTTP destination to use
for bypass on an HTTP deliv-
eryservice - bypass starts when
serving more than the global-
MaxMbps traffic on this deliv-
eryservice.

id string The deliveryservice id
(database row number).

Continued on next page

88 Chapter 4. Developer’s Guide

Traffic Control Documentation, Release 1.1.3

Table 3 – continued from previous page
Parameter Type Description
infoUrl string Use this to add a URL that

points to more information
about that deliveryservice.

ipv6RoutingEnabled bool false: send IPv4 address of
Traffic Router to client on
HTTP type del.

longDesc string Description field 1.
longDesc1 string Description field 2.
longDesc2 string Description field 2.
matchList array Array of matchList hashes.
>>type string The type of MatchList

(one of :ref:to-api-types
use_in_table=’regex’).

>>setNumber string The set Number of the match-
List.

>>pattern string The regexp for the matchList.
maxDnsAnswers string The maximum number of IPs to

put in a A/AAAA response for
a DNS deliveryservice (0 means
all available).

missLat string The latitude to use when the
client cannot be found in the
CZF or the Geo lookup.

missLong string The longitude to use when the
client cannot be found in the
CZF or the Geo lookup.

midHeaderRewrite string The MID header rewrite actions
to perform.

multiSiteOrigin string
Is the Multi Site Origin feature
enabled for this delivery
service. See rl-mulit-site-origin

orgServerFqdn string The origin server base URL
(FQDN when used in this in-
stance, includes the protocol
(http:// or https://) for use in re-
trieving content from the origin
server.

profileDescription string The description of the Traffic
Router Profile with which this
deliveryservice is associated.

profileName string The name of the Traffic Router
Profile with which this delivery-
service is associated.

Continued on next page

4.1. Developer’s Guide 89

http://
https://

Traffic Control Documentation, Release 1.1.3

Table 3 – continued from previous page
Parameter Type Description
qstringIgnore string

• 0: no special query string
handling; it is for use in
the cache-key and pass up
to origin.

• 1: ignore query string in
cache-key, but pass it up to
parent and or origin.

• 2: drop query string at
edge, and do not use it in
the cache-key.

regexRemap string Regex Remap rule to apply to
this delivery service at the Edge
tier.

remapText string Additional raw remap line text.
signed bool

• false: token based auth
(see :ref:token-based-
auth) is not enabled for
this deliveryservice.

• true: token based auth is
enabled for this delivery-
service.

rangeRequestHandling string How to treat range requests:
• 0 Do not cache (ranges re-

quested from files taht are
already cached due to a
non range request will be
a HIT)

• 1 Use the back-
ground_fetch plugin.

• 2 Use the
cache_range_requests
plugin.

type string The type of this deliveryser-
vice (one of :ref:to-api-types
use_in_table=’deliveryservice’).

xmlId string Unique string that describes this
deliveryservice.

Response Example

{
"response": [

{
"active": true,
"cacheurl": null,
"protocol": "0",
"ccrDnsTtl": "3600",

(continues on next page)

90 Chapter 4. Developer’s Guide

https://docs.trafficserver.apache.org/en/latest/reference/plugins/background_fetch.en.html
https://docs.trafficserver.apache.org/en/latest/reference/plugins/background_fetch.en.html

Traffic Control Documentation, Release 1.1.3

(continued from previous page)

"checkPath": "/crossdomain.xml",
"dnsBypassIp": "",
"dnsBypassIp6": null,
"dnsBypassTtl": null,
"dscp": "40",
"geoLimit": "0",
"globalMaxMbps": "0",
"globalMaxTps": "0",
"headerRewrite": "add-header X-Powered-By: KABLETOWN [L]",
"edgeHeaderRewrite": "add-header X-Powered-By: KABLETOWN [L]",
"midHeaderRewrite": null,
"httpBypassFqdn": "",
"rangeRequestHandling": "0",
"id": "12",
"infoUrl": "",
"ipv6RoutingEnabled": false,
"longDesc": "long_desc",
"longDesc1": "long_desc_1",
"longDesc2": "long_desc_2",
"matchList": [
{
"type": "HOST_REGEXP",
"setNumber": "0",
"pattern": ".*\\.images\\..*"

}
],
"maxDnsAnswers": "0",
"missLat": "41.881944",
"missLong": "-87.627778",
"orgServerFqdn": "http://cdl.origin.kabletown.net",
"profileDescription": "Comcast Content Router for cdn2.comcast.net",
"profileName": "EDGE_CDN2",
"qstringIgnore": "0",
"remapText": null,
"regexRemap": null,
"signed": true,
"type": "HTTP",
"xmlId": "cdl-c2"

},
{ .. },
{ .. }

],
"version": "1.1"

}

GET /api/1.1/deliveryservices/:id.json

Retrieves a specific delivery service. See also Using Traffic Ops - Delivery Service.

Authentication Required: Yes

Response Properties

4.1. Developer’s Guide 91

http://traffic-control-cdn.net/docs/latest/admin/traffic_ops_using.html#delivery-service

Traffic Control Documentation, Release 1.1.3

Parameter Type Description
active bool true if active, false if inactive

(inact).
cacheurl string Cache URL rule to apply to this

delivery service.
protocol string

• 0: serve with http:// at
EDGE

• 1: serve with https:// at
EDGE

• 2: serve with both http://
and https:// at EDGE

ccrDnsTtl string The TTL of the DNS response
for A or AAAA queries request-
ing the IP address of the tr. host.

checkPath string The path portion of the URL
to check this deliveryservice for
health.

dnsBypassIp string The IPv4 IP to use for bypass
on a DNS deliveryservice - by-
pass starts when serving more
than the globalMaxMbps traffic
on this deliveryservice.

dnsBypassIp6 string The IPv6 IP to use for bypass
on a DNS deliveryservice - by-
pass starts when serving more
than the globalMaxMbps traffic
on this deliveryservice.

dnsBypassTtl string The TTL of the DNS bypass re-
sponse.

dscp string The Differentiated Services
Code Point (DSCP) with which
to mark downstream (EDGE ->
customer) traffic.

edgeHeaderRewrite string The EDGE header rewrite ac-
tions to perform.

geoLimit string
• 0: None - no limitations
• 1: Only route on CZF file

hit
• 2: Only route on CZF hit

or when from USA
Note that this does not prevent
access to content or makes con-
tent secure; it just prevents rout-
ing to the content by Traffic
Router.

Continued on next page

92 Chapter 4. Developer’s Guide

http://
https://
http://
https://

Traffic Control Documentation, Release 1.1.3

Table 4 – continued from previous page
Parameter Type Description
globalMaxMbps string The maximum global band-

width allowed on this delivery-
service. If exceeded, the traffic
routes to the dnsByPassIp* for
DNS deliveryservices and to the
httpBypassFqdn for HTTP de-
liveryservices.

globalMaxTps string The maximum global transac-
tions per second allowed on this
deliveryservice. When this is
exceeded traffic will be sent to
the dnsByPassIp* for DNS de-
liveryservices and to the http-
BypassFqdn for HTTP deliv-
eryservices

headerRewrite string The EDGE header rewrite ac-
tions to perform.

httpBypassFqdn string The HTTP destination to use
for bypass on an HTTP deliv-
eryservice - bypass starts when
serving more than the global-
MaxMbps traffic on this deliv-
eryservice.

id string The deliveryservice id
(database row number).

infoUrl string Use this to add a URL that
points to more information
about that deliveryservice.

ipv6RoutingEnabled bool false: send IPv4 address of
Traffic Router to client on
HTTP type del.

longDesc string Description field 1.
longDesc1 string Description field 2.
longDesc2 string Description field 2.
matchList array Array of matchList hashes.
>>type string The type of MatchList

(one of :ref:to-api-types
use_in_table=’regex’).

>>setNumber string The set Number of the match-
List.

>>pattern string The regexp for the matchList.
maxDnsAnswers string The maximum number of IPs to

put in a A/AAAA response for
a DNS deliveryservice (0 means
all available).

missLat string The latitude to use when the
client cannot be found in the
CZF or the Geo lookup.

Continued on next page

4.1. Developer’s Guide 93

Traffic Control Documentation, Release 1.1.3

Table 4 – continued from previous page
Parameter Type Description
missLong string The longitude to use when the

client cannot be found in the
CZF or the Geo lookup.

midHeaderRewrite string The MID header rewrite actions
to perform.

orgServerFqdn string The origin server base URL
(FQDN when used in this in-
stance, includes the protocol
(http:// or https://) for use in re-
trieving content from the origin
server.

profileDescription string The description of the Traffic
Router Profile with which this
deliveryservice is associated.

profileName string The name of the Traffic Router
Profile with which this delivery-
service is associated.

qstringIgnore string
• 0: no special query string

handling; it is for use in
the cache-key and pass up
to origin.

• 1: ignore query string in
cache-key, but pass it up to
parent and or origin.

• 2: drop query string at
edge, and do not use it in
the cache-key.

regexRemap string Regex Remap rule to apply to
this delivery service at the Edge
tier.

remapText string Additional raw remap line text.
signed bool

• false: token based auth
(see :ref:token-based-
auth) is not enabled for
this deliveryservice.

• true: token based auth is
enabled for this delivery-
service.

Continued on next page

94 Chapter 4. Developer’s Guide

http://
https://

Traffic Control Documentation, Release 1.1.3

Table 4 – continued from previous page
Parameter Type Description
rangeRequestHandling string How to treat range requests:

• 0 Do not cache (ranges re-
quested from files taht are
already cached due to a
non range request will be
a HIT)

• 1 Use the back-
ground_fetch plugin.

• 2 Use the
cache_range_requests
plugin.

type string The type of this deliveryser-
vice (one of :ref:to-api-types
use_in_table=’deliveryservice’).

xmlId string Unique string that describes this
deliveryservice.

Response Example

{
"response": [

{
"active": true,
"cacheurl": null,
"protocol": "0",
"ccrDnsTtl": "3600",
"checkPath": "/crossdomain.xml",
"dnsBypassIp": "",
"dnsBypassIp6": null,
"dnsBypassTtl": null,
"dscp": "40",
"geoLimit": "0",
"globalMaxMbps": "0",
"globalMaxTps": "0",
"headerRewrite": "add-header X-Powered-By: KABLETOWN [L]",
"edgeHeaderRewrite": "add-header X-Powered-By: KABLETOWN [L]",
"midHeaderRewrite": null,
"httpBypassFqdn": "",
"rangeRequestHandling": "0",
"id": "12",
"infoUrl": "",
"ipv6RoutingEnabled": false,
"longDesc": "long_desc",
"longDesc1": "long_desc_1",
"longDesc2": "long_desc_2",
"matchList": [
{
"type": "HOST_REGEXP",
"setNumber": "0",
"pattern": ".*\\.images\\..*"

}
],
"maxDnsAnswers": "0",

(continues on next page)

4.1. Developer’s Guide 95

https://docs.trafficserver.apache.org/en/latest/reference/plugins/background_fetch.en.html
https://docs.trafficserver.apache.org/en/latest/reference/plugins/background_fetch.en.html

Traffic Control Documentation, Release 1.1.3

(continued from previous page)

"missLat": "41.881944",
"missLong": "-87.627778",
"orgServerFqdn": "http://cdl.origin.kabletown.net",
"profileDescription": "Comcast Content Router for cdn2.comcast.net",
"profileName": "EDGE_CDN2",
"qstringIgnore": "0",
"remapText": null,
"regexRemap": null,
"signed": true,
"type": "HTTP",
"xmlId": "cdl-c2"

}
],
"version": "1.1"

}

Health

GET /api/1.1/deliveryservices/:id/capacity.json

Retrieves the capacity percentages of a delivery service.

Authentication Required: Yes

Request Route Parameters

Name Required Description
id yes delivery service id.

Response Properties

Parameter Type Description
availablePercentnum-

ber
The percentage of server capacity assigned to the delivery service that
is available.

unavailablePercentnum-
ber

The percentage of server capacity assigned to the delivery service that
is unavailable.

utilizedPercent num-
ber

The percentage of server capacity assigned to the delivery service be-
ing used.

maintenancePercentnum-
ber

The percentage of server capacity assigned to the delivery service that
is down for maintenance.

Response Example

{
"response": {

"availablePercent": 89.0939840205533,
"unavailablePercent": 0,
"utilizedPercent": 10.9060020300395,
"maintenancePercent": 0.0000139494071146245

},
"version": "1.1"
}

96 Chapter 4. Developer’s Guide

Traffic Control Documentation, Release 1.1.3

GET /api/1.1/deliveryservices/:id/routing.json

Retrieves the routing method percentages of a delivery service.

Authentication Required: Yes

Request Route Parameters

Name Required Description
id yes delivery service id.

Response Properties

Parame-
ter

Type Description

staticRoutenum-
ber

The percentage of Traffic Router responses for this deliveryservice satisfied with
pre-configured DNS entries.

miss num-
ber

The percentage of Traffic Router responses for this deliveryservice that were a
miss (no location available for client IP).

geo num-
ber

The percentage of Traffic Router responses for this deliveryservice satisfied us-
ing 3rd party geo-IP mapping.

err num-
ber

The percentage of Traffic Router requests for this deliveryservice resulting in an
error.

cz num-
ber

The percentage of Traffic Router requests for this deliveryservice satisfied by a
CZF hit.

dsr num-
ber

The percentage of Traffic Router requests for this deliveryservice satisfied by
sending the client to the overflow CDN.

Response Example

{
"response": {

"staticRoute": 0,
"miss": 0,
"geo": 37.8855391018869,
"err": 0,
"cz": 62.1144608981131,
"dsr": 0

},
"version": "1.1"
}

Metrics

GET /api/1.1/deliveryservices/:id/edge/metric_types/:metric/start_date/:start/end_date/:end/\ inter-
val/:interval/window_start/:window_start/window_end/:window_end.json

Retrieves edge summary metrics of all cache groups for a delivery service.

Authentication Required: Yes

Request Route Parameters

4.1. Developer’s Guide 97

Traffic Control Documentation, Release 1.1.3

Name Re-
quired

Description

id yes The delivery service id.
metric yes One of the following: “kbps”, “tps_total”, “tps_2xx”, “tps_3xx”,

“tps_4xx”, “tps_5xx”.
start yes UNIX time, yesterday, now.
end yes UNIX time, yesterday, now.
interval yes > 10
window_startyes UNIX time, yesterday, now.
window_end yes UNIX time, yesterday, now.

Request Query Parameters

Name Required Description
summary no Flag used to return summary metrics only.

Response Content Type: application/json

Response Properties

Parameter Type Description
ninetyFifth number
average int
min number
max number
total number

Response Example

{
"response": {

"ninetyFifth": 183982091.479,
"average": 97444798,
"min": 31193860.46233,
"max": 205772883.28367,
"total": 3643217414091.13

},
"version": "1.1"
}

GET /api/1.1/usage/deliveryservices/:ds/cachegroups/:name/metric_types/:metric/start_date/:start_date/\
end_date/:end_date/interval/:interval.json

Retrieves edge metrics of one or all locations (cache groups) for a delivery service.

Authentication Required: Yes

Request Route Parameters

98 Chapter 4. Developer’s Guide

Traffic Control Documentation, Release 1.1.3

Name Re-
quired

Description

id yes The delivery service id.
cache_group_nameyes name, all.
usage_type yes One of the following: “kbps”, “tps_total”, “tps_2xx”, “tps_3xx”,

“tps_4xx”, “tps_5xx”.
start yes UNIX time, yesterday, now.
end yes UNIX time, yesterday, now.
interval yes > 10

Response Properties

Parameter Type Description
deliveryServiceName string
statName string
deliveryServiceId string
interval int
series array
>>timeBase int
>>samples array
end string
elapsed number
cdnName string
hostName string
summary hash
>‘‘ninetyFifth‘‘ number
>‘‘average‘‘ int
>‘‘min‘‘ number
>‘‘max‘‘ number
>‘‘total‘‘ number
cacheGroupName string
start string

Response Example

TBD

GET /api/1.1/cdns/peakusage/:peak_usage_type/deliveryservice/:ds/cachegroup/:name/start_date/:start/\
end_date/:end/interval/:interval.json

Authentication Required: Yes

Response Properties

4.1. Developer’s Guide 99

Traffic Control Documentation, Release 1.1.3

Parameter Type Description
TotalGBytesServedSinceStart number

>>item number
>>item number
>>item number
>>item number
>>item number
>>item number

Response Example

TBD

GET /api/1.1/deliveryservices/:id/:server_type/metrics/:metric_type/:start/:end.json

Retrieves detailed and summary metrics for MIDs or EDGEs for a delivery service.

Authentication Required: No

Request Route Parameters

Name Re-
quired

Description

id yes The delivery service id.
server_type yes EDGE or MID.
metric_type yes One of the following: “kbps”, “tps_total”, “tps_2xx”, “tps_3xx”,

“tps_4xx”, “tps_5xx”.
start yes UNIX time, yesterday, now.
end yes UNIX time, yesterday, now.

Response Properties

100 Chapter 4. Developer’s Guide

Traffic Control Documentation, Release 1.1.3

Parameter Type Description
stats hash
>>count int
>>98thPercentile number
>>min number
>>max number
>>5thPercentile number
>>95thPercentile number
>>median number
>>mean number
>>stddev number
>>sum number
data array
>>item array
>>time number
>>value number
label string

Response Example

{
"response": [

{
"stats": {

"count": 988,
"98thPercentile": 16589105.55958,
"min": 3185442.975,
"max": 17124754.257,
"5thPercentile": 3901253.95445,
"95thPercentile": 16013210.034,
"median": 8816895.576,
"mean": 8995846.31741194,
"stddev": 3941169.83683573,
"sum": 333296106.060112

},
"data": [

[
1414303200000,
12923518.466

],
[

1414303500000,
12625139.65

]
],
"label": "MID Kbps"

}
],
"version": "1.1"
}

Server

GET /api/1.1/deliveryserviceserver.json

4.1. Developer’s Guide 101

Traffic Control Documentation, Release 1.1.3

Authentication Required: Yes

Request Query Parameters

Name Required Description
page no The page number for use in pagination.
limit no For use in limiting the result set.

Response Properties

Parameter Type Description
lastUpdated array
server string
deliveryService string

Response Example

{
"page": 2,
"orderby": "deliveryservice",
"response": [

{
"lastUpdated": "2014-09-26 17:53:43",
"server": "20",
"deliveryService": "1"

},
{

"lastUpdated": "2014-09-26 17:53:44",
"server": "21",
"deliveryService": "1"

},
],
"version": "1.1",
"limit": 2
}

SSL Keys

GET /api/1.1/deliveryservices/xmlId/:xmlid/sslkeys.json

Authentication Required: Yes

Role Required: Admin

Request Route Parameters

Name Required Description
xmlId yes xml_id of the desired delivery service

Request Query Parameters

Name Required Description
version no The version number to retrieve

102 Chapter 4. Developer’s Guide

Traffic Control Documentation, Release 1.1.3

Response Properties

Parame-
ter

Type Description

crt string base64 encoded crt file for delivery service
csr string base64 encoded csr file for delivery service
key string base64 encoded private key file for delivery service
businessUnitstring The business unit entered by the user when generating certs. Field is optional and

if not provided by the user will not be in response
city string The city entered by the user when generating certs. Field is optional and if not

provided by the user will not be in response
organizationstring The organization entered by the user when generating certs. Field is optional and

if not provided by the user will not be in response
hostname string The hostname entered by the user when generating certs. Field is optional and if

not provided by the user will not be in response
country string The country entered by the user when generating certs. Field is optional and if

not provided by the user will not be in response
state string The state entered by the user when generating certs. Field is optional and if not

provided by the user will not be in response
version string The version of the certificate record in Riak

Response Example

{
"version": "1.1",
"response": {

"certificate": {
"crt": "crt",
"key": "key",
"csr": "csr"

},
"businessUnit": "CDN_Eng",
"city": "Denver",
"organization": "KableTown",
"hostname": "foober.com",
"country": "US",
"state": "Colorado",
"version": "1"

}
}

GET /api/1.1/deliveryservices/hostname/:hostname/sslkeys.json

Authentication Required: Yes

Role Required: Admin

Request Route Parameters

Name Required Description
hostname yes pristine hostname of the desired delivery service

4.1. Developer’s Guide 103

Traffic Control Documentation, Release 1.1.3

Request Query Parameters

Name Required Description
version no The version number to retrieve

Response Properties

Parame-
ter

Type Description

crt string base64 encoded crt file for delivery service
csr string base64 encoded csr file for delivery service
key string base64 encoded private key file for delivery service
businessUnitstring The business unit entered by the user when generating certs. Field is optional and

if not provided by the user will not be in response
city string The city entered by the user when generating certs. Field is optional and if not

provided by the user will not be in response
organizationstring The organization entered by the user when generating certs. Field is optional and

if not provided by the user will not be in response
hostname string The hostname entered by the user when generating certs. Field is optional and if

not provided by the user will not be in response
country string The country entered by the user when generating certs. Field is optional and if

not provided by the user will not be in response
state string The state entered by the user when generating certs. Field is optional and if not

provided by the user will not be in response
version string The version of the certificate record in Riak

Response Example

{
"version": "1.1",
"response": {

"certificate": {
"crt": "crt",
"key": "key",
"csr": "csr"

},
"businessUnit": "CDN_Eng",
"city": "Denver",
"organization": "KableTown",
"hostname": "foober.com",
"country": "US",
"state": "Colorado",
"version": "1"

}
}

GET /api/1.1/deliveryservices/xmlId/:xmlid/sslkeys/delete.json

Authentication Required: Yes

Role Required: Admin

104 Chapter 4. Developer’s Guide

Traffic Control Documentation, Release 1.1.3

Request Route Parameters

Name Required Description
xmlId yes xml_id of the desired delivery service

Request Query Parameters

Name Required Description
version no The version number to retrieve

Response Properties

Parameter Type Description
response string success response

Response Example

{
"version": "1.1",
"response": "Successfully deleted ssl keys for <xml_id>"

}

POST /api/1.1/deliveryservices/sslkeys/generate

Generates SSL crt, csr, and private key for a delivery service

Authentication Required: Yes Role Required: Admin

Response Content Type: application/json

Request Properties

Parameter Type Description
key string xml_id of the delivery service
version string version of the keys being generated
hostname string the pristine hostname of the delivery service
country string
state string
city string
org string
unit boolean

Request Example

{
"key": "ds-01",
"businessUnit": "CDN Engineering",
"version": "3",
"hostname": "tr.ds-01.ott.kabletown.com",

(continues on next page)

4.1. Developer’s Guide 105

Traffic Control Documentation, Release 1.1.3

(continued from previous page)

"certificate": {
"key": "some_key",
"csr": "some_csr",
"crt": "some_crt"

},
"country": "US",
"organization": "Kabletown",
"city": "Denver",
"state": "Colorado"

}

Response Properties

Parameter Type Description
response string response string
version string API version

Response Example

{
"version": "1.1",
"response": "Successfully created ssl keys for ds-01"

}

POST /api/1.1/deliveryservices/sslkeys/add

Allows user to add SSL crt, csr, and private key for a delivery service

Authentication Required: Yes Role Required: Admin

Request Properties

Parameter Type Description
key string xml_id of the delivery service
version string version of the keys being generated
csr string
crt string
key string

Request Example

{
"key": "ds-01",
"version": "1",
"certificate": {

"key": "some_key",
"csr": "some_csr",
"crt": "some_crt"

}
}

106 Chapter 4. Developer’s Guide

Traffic Control Documentation, Release 1.1.3

Response Properties

Parameter Type Description
response string response string
version string API version

Response Example

{
"version": "1.1",
"response": "Successfully added ssl keys for ds-01"

}

hwinfo

GET /api/1.1/hwinfo.json

Authentication Required: Yes

Response Properties

Parameter Type Description
serverId string Local unique identifier for this specific server’s hardware info
serverHostName string Hostname for this specific server’s hardware info
lastUpdated string The Time and Date for the last update for this server.
val string Freeform value used to track anything about a server’s hardware info
description string Freeform description for this specific server’s hardware info

Response Example

{
"response": [

{
"serverId": "odol-atsmid-cen-09",
"lastUpdated": "2014-05-27 09:06:02",
"val": "D1S4",
"description": "Physical Disk 0:1:0"

},
{

"serverId": "odol-atsmid-cen-09",
"lastUpdated": "2014-05-27 09:06:02",
"val": "D1S4",
"description": "Physical Disk 0:1:1"

}
],
"version": "1.1"
}

Parameter

GET /api/1.1/parameters.json

4.1. Developer’s Guide 107

Traffic Control Documentation, Release 1.1.3

Authentication Required: Yes

Return Values

Parameter Type Description
last_updated string The Time / Date this server entry was last updated
value string The parameter value
name string The parameter name
config_file string The parameter config_file

Response Example

{
"response": [

{
"last_updated": "2012-09-17 21:41:22",
"value": "foo.bar.net",
"name": "domain_name",
"config_file": "FooConfig.xml"

},
{

"last_updated": "2012-09-17 21:41:22",
"value": "0,1,2,3,4,5,6",
"name": "Drive_Letters",
"config_file": "storage.config"

},
{

"last_updated": "2012-09-17 21:41:22",
"value": "STRING __HOSTNAME__",
"name": "CONFIG proxy.config.proxy_name",
"config_file": "records.config"

}
],
"version": "1.1"
}

GET /api/1.1/parameters/profile/:profile_name.json

Authentication Required: Yes

Request Route Parameters

Name Required Description
profile_name yes

Return Values

Parameter Type Description
last_updated string The Time / Date this server entry was last updated
value string The parameter value
name string The parameter name
config_file string The parameter config_file

108 Chapter 4. Developer’s Guide

Traffic Control Documentation, Release 1.1.3

Response Example

{
"response": [

{
"last_updated": "2012-09-17 21:41:22",
"value": "foo.bar.net",
"name": "domain_name",
"config_file": "FooConfig.xml"

},
{

"last_updated": "2012-09-17 21:41:22",
"value": "0,1,2,3,4,5,6",
"name": "Drive_Letters",
"config_file": "storage.config"

},
{

"last_updated": "2012-09-17 21:41:22",
"value": "STRING __HOSTNAME__",
"name": "CONFIG proxy.config.proxy_name",
"config_file": "records.config"

}
],
"version": "1.1"
}

Physical Location

GET /api/1.1/phys_locations.json

Authentication Required: Yes

Response Properties

Parameter Type Description
region string
poc string
name string
comments string
phone string
state string
email string
city string
zip string
id string
address string
shortName string

Response Example

{
"response": [

{
"region": "Mile High",

(continues on next page)

4.1. Developer’s Guide 109

Traffic Control Documentation, Release 1.1.3

(continued from previous page)

"poc": "Jane Doe",
"name": "Albuquerque",
"comments": "Albuquerque",
"phone": "(123) 555-1111",
"state": "NM",
"email": "jane.doe@email.com",
"city": "Albuquerque",
"zip": "87107",
"id": "2",
"address": "123 East 3rd St",
"shortName": "Albuquerque"

},
{

"region": "Chicago",
"poc": "John Doe",
"name": "Chicago",
"comments": "",
"phone": "(321) 555-1111",
"state": "IL",
"email": "john.doe@email.com",
"city": "Chicago",
"zip": "60636",
"id": "3",
"address": "123 East 4th Street",
"shortName": "chicago"

}
],
"version": "1.1"
}

GET /api/1.1/phys_locations/trimmed.json

Authentication Required: Yes

Response Messages

Response Properties

Parameter Type Description
name array

Response Example

{
"response": [

{
"name": "Albuquerque"

},
{

"name": "Ashburn"
}

],

(continues on next page)

110 Chapter 4. Developer’s Guide

Traffic Control Documentation, Release 1.1.3

(continued from previous page)

"version": "1.1"
}

Profiles

GET /api/1.1/profiles

Authentication Required: Yes

Response Properties

Parameter Type Description
lastUpdated array The Time / Date this server entry was last updated
name string The name for the profile
id string Primary key
description string The description for the profile

Response Example

TBD

GET /api/1.1/profiles/trimmed.json

Authentication Required: Yes

Response Properties

Parameter Type Description
alerts array
>level string
>text string
version string

Response Example

TBD

Redis

Note: The redis documentation needs a thorough review!

GET /api/1.1/traffic_monitor/stats.json

Authentication Required: Yes

Response Content Type: application/json

4.1. Developer’s Guide 111

Traffic Control Documentation, Release 1.1.3

Response Messages

HTTP Status Code: 200
Reason: Success

Response Properties

Parameter Type Description
aaData array

Response Example

{
"aaData": [

[
"0",
"ALL",
"ALL",
"ALL",
"true",
"ALL",
"142035",
"172365661.85"

],
[

1,
"EDGE1_TOP_421_PSPP",
"odol-atsec-atl-03",
"us-ga-atlanta",
"1",
"REPORTED",
"596",
"923510.04",
"69.241.82.126"

]
],
"version": "1.1"

}

GET /api/1.1/redis/stats.json

Authentication Required: Yes

Response Content Type: application/json

Response Messages

HTTP Status Code: 200
Reason: Success

Response Properties

112 Chapter 4. Developer’s Guide

Traffic Control Documentation, Release 1.1.3

Parameter Type Description
number array
what string
which string
interval string
elapsed string
end string
start string

Response Example

{
"number": -1,
"what": null,
"which": null,
"interval": " 10 seconds ",
"elapsed": "0.11271 (0.112065) ",
"end": "Thu Jan 1 00:00:00 1970",
"start": "Thu Jan 1 00:00:00 1970"

}

GET /api/1.1/redis/info/:host_name.json

Authentication Required: Yes

Request Route Parameters

Parameter Type Description
host_name string

Request Example

Response Content Type: application/json

Response Messages

HTTP Status Code: 200
Reason: Success

Response Properties

Parameter Type Description
Server hash
>redis_build_id string
>config_file string
>uptime_in_seconds string
>hz string
>os string
>redis_git_sha1 string

Continued on next page

4.1. Developer’s Guide 113

Traffic Control Documentation, Release 1.1.3

Table 5 – continued from previous page
Parameter Type Description
>redis_version string
>tcp_port string
>redis_git_dirty string
>redis_mode string
>run_id string
>uptime_in_days string
>gcc_version string
>arch_bits string
>lru_clock string
>multiplexing_api string
Keyspace string
>db0 string
slowlog array
Persistence hash
>rdb_bgsave_in_progress string
>loading string
>rdb_current_bgsave_time_sec string
>aof_enabled string
>rdb_last_bgsave_time_sec string
>aof_last_rewrite_time_sec string
>aof_last_write_status string
>rdb_last_bgsave_status string
>aof_last_bgrewrite_status string
>aof_current_rewrite_time_sec string
>aof_rewrite_scheduled string
>aof_rewrite_in_progress string
>rdb_last_save_time string
>rdb_changes_since_last_save string
slowlen int
CPU hash
>used_cpu_user string
>used_cpu_sys string
>used_cpu_user_children string
>used_cpu_sys_children string
Memory string
>used_memory_lua string
>mem_allocator string
>used_memory_human string
>used_memory_peak_human string
>used_memory_peak string
>used_memory_rss string
>mem_fragmentation_ratio string
>used_memory string
Replication hash
>repl_backlog_first_byte_offset string
>repl_backlog_active string
>repl_backlog_histlen string
>repl_backlog_size string
>role string

Continued on next page

114 Chapter 4. Developer’s Guide

Traffic Control Documentation, Release 1.1.3

Table 5 – continued from previous page
Parameter Type Description
>master_repl_offset string
>connected_slaves string
Clients hash
>client_biggest_input_buf string
>client_longest_output_list string
>blocked_clients string
>connected_clients string
Stats hash
>latest_fork_usec string
>rejected_connections string
>sync_partial_ok string
>pubsub_channels string
>instantaneous_ops_per_sec string
>total_connections_received string
>pubsub_patterns string
>sync_full string
>keyspace_hits string
>keyspace_misses string
>total_commands_processed string
>expired_keys string
>sync_partial_err string

Response Example

{
"Server": {

"redis_build_id": "606641459177bc09",
"config_file": "\/etc\/redis\/redis.conf",
"uptime_in_seconds": "1113787",
"hz": "10",
"os": "Linux 2.6.32-220.el6.x86_64 x86_64",
"redis_git_sha1": "00000000",
"redis_version": "2.8.15",
"process_id": "14607",
"tcp_port": "6379",
"redis_git_dirty": "0",
"redis_mode": "standalone",
"run_id": "43c5d003453b96e38ad3eae54026d8e1b078a7fd",
"uptime_in_days": "12",
"gcc_version": "4.4.6",
"arch_bits": "64",
"lru_clock": "16050046",
"multiplexing_api": "epoll"

},
"Keyspace": {

"db0": "keys=26319,expires=0,avg_ttl=0"
},
"slowlog": [

[
"32656",
"1425336191",
"18539",
[

(continues on next page)

4.1. Developer’s Guide 115

Traffic Control Documentation, Release 1.1.3

(continued from previous page)

"keys",
"*"

]
]

],
"Persistence": {

"rdb_bgsave_in_progress": "0",
"loading": "0",
"rdb_current_bgsave_time_sec": "-1",
"aof_enabled": "0",
"rdb_last_bgsave_time_sec": "-1",
"aof_last_rewrite_time_sec": "-1",
"aof_last_write_status": "ok",
"rdb_last_bgsave_status": "ok",
"aof_last_bgrewrite_status": "ok",
"aof_current_rewrite_time_sec": "-1",
"aof_rewrite_scheduled": "0",
"aof_rewrite_in_progress": "0",
"rdb_last_save_time": "1424222403",
"rdb_changes_since_last_save": "2595831724"

},
"slowlen": 128,
"CPU": {

"used_cpu_user": "45252.98",
"used_cpu_sys": "154718.84",
"used_cpu_user_children": "0.00",
"used_cpu_sys_children": "0.00"

},
"Memory": {

"used_memory_lua": "33792",
"mem_allocator": "jemalloc-3.6.0",
"used_memory_human": "5.25G",
"used_memory_peak_human": "8.08G",
"used_memory_peak": "8675798632",
"used_memory_rss": "8870088704",
"mem_fragmentation_ratio": "1.57",
"used_memory": "5633381640"

},
"Replication": {

"repl_backlog_first_byte_offset": "0",
"repl_backlog_active": "0",
"repl_backlog_histlen": "0",
"repl_backlog_size": "1048576",
"role": "master",
"master_repl_offset": "0",
"connected_slaves": "0"

},
"Clients": {

"client_biggest_input_buf": "0",
"client_longest_output_list": "0",
"blocked_clients": "0",
"connected_clients": "16"

},
"Stats": {

"latest_fork_usec": "0",
"rejected_connections": "0",
"sync_partial_ok": "0",

(continues on next page)

116 Chapter 4. Developer’s Guide

Traffic Control Documentation, Release 1.1.3

(continued from previous page)

"pubsub_channels": "0",
"instantaneous_ops_per_sec": "2238",
"total_connections_received": "2502657",
"evicted_keys": "0",
"pubsub_patterns": "0",
"sync_full": "0",
"keyspace_hits": "49388626",
"keyspace_misses": "780",
"total_commands_processed": "2645272238",
"expired_keys": "0",
"sync_partial_err": "0"

}
}

GET /api/1.1/redis/match/#match/start_date/:start_date/end_date/:end_date/interval/:interval.json

Authentication Required:

Request Route Parameters

Parameter Type Description
start_date string
end_date string
interval string

Request Example

Response Content Type: application/json

Response Messages

HTTP Status Code: 200
Reason: Success

Response Properties

Parameter Type Description
alerts array
>level string
>text string
version string

Response Example

Regions

GET /api/1.1/regions.json

Authentication Required:

4.1. Developer’s Guide 117

Traffic Control Documentation, Release 1.1.3

Response Content Type: application/json

Response Properties

Parameter Type Description
name string
id string

Response Example

{
"response": [

{
"name": "Atlanta",
"id": "6"

},
{

"name": "Beltway",
"id": "1"

}
],
"version": "1.1"
}

Roles

GET /api/1.1/roles.json

Authentication Required: Yes

Response Properties

Parameter Type Description
name string
id string
privLevel string
description string

Response Example

{
"response": [

{
"name": "read-only",
"id": "2",
"privLevel": "10",
"description": "read-only user"

}
],
"version": "1.1"
}

118 Chapter 4. Developer’s Guide

Traffic Control Documentation, Release 1.1.3

Server

GET /api/1.1/servers.json

Retrieves properties of CDN servers.

Authentication Required: Yes

Response Properties

Parameter Type Description
cachegroup string The cache group name (see Cache Group).
domainName string The domain name part of the FQDN of the cache.
hostName string The host name part of the cache.
id string The server id (database row number).
iloIpAddress string The IPv4 address of the lights-out-management port.
iloIpGateway string The IPv4 gateway address of the lights-out-management port.
iloIpNetmask string The IPv4 netmask of the lights-out-management port.
iloPassword string The password of the of the lights-out-management user (displays as ** unless you are an ‘admin’ user).
iloUsername string The user name for lights-out-management.
interfaceMtu string The Maximum Transmission Unit (MTU) to configure for interfaceName.
interfaceName string The network interface name used for serving traffic.
ip6Address string The IPv6 address/netmask for interfaceName.
ip6Gateway string The IPv6 gateway for interfaceName.
ipAddress string The IPv4 address for interfaceName.
ipGateway string The IPv4 gateway for interfaceName.
ipNetmask string The IPv4 netmask for interfaceName.
lastUpdated string The Time and Date for the last update for this server.
mgmtIpAddress string The IPv4 address of the management port (optional).
mgmtIpGateway string The IPv4 gateway of the management port (optional).
mgmtIpNetmask string The IPv4 netmask of the management port (optional).
physLocation string The physical location name (see Physical Location).
profile string The assigned profile name (see Profiles).
rack string A string indicating rack location.
routerHostName string The human readable name of the router.
routerPortName string The human readable name of the router port.
status string The Status string (See Status).
tcpPort string The default TCP port on which the main application listens (80 for a cache in most cases).
type string The name of the type of this server (see Types).
xmppId string Deprecated.
xmppPasswd string Deprecated.

Response Example

{
"response": [

{
"cachegroup": "us-il-chicago",
"domainName": "chi.kabletown.net",
"hostName": "atsec-chi-00",
"id": "19",
"iloIpAddress": "172.16.2.6",
"iloIpGateway": "172.16.2.1",
"iloIpNetmask": "255.255.255.0",

(continues on next page)

4.1. Developer’s Guide 119

Traffic Control Documentation, Release 1.1.3

(continued from previous page)

"iloPassword": "********",
"iloUsername": "",
"interfaceMtu": "9000",
"interfaceName": "bond0",
"ip6Address": "2033:D0D0:3300::2:2/64",
"ip6Gateway": "2033:D0D0:3300::2:1",
"ipAddress": "10.10.2.2",
"ipGateway": "10.10.2.1",
"ipNetmask": "255.255.255.0",
"lastUpdated": "2015-03-08 15:57:32",
"mgmtIpAddress": "",
"mgmtIpGateway": "",
"mgmtIpNetmask": "",
"physLocation": "plocation-chi-1",
"profile": "EDGE1_CDN1_421_SSL",
"rack": "RR 119.02",
"routerHostName": "rtr-chi.kabletown.net",
"routerPortName": "2",
"status": "ONLINE",
"tcpPort": "80",
"type": "EDGE",
"xmppId": "atsec-chi-00-dummyxmpp",
"xmppPasswd": "**********"

},
{
... more server data
}

]
"version": "1.1"

}

GET /api/1.1/servers/summary.json

Retrieves a count of CDN servers by type.

Authentication Required: Yes

Response Properties

Parameter Type Description
count int The number of servers of this type in this instance of Traffic Ops.
type string The name of the type of the server count (see Types).

Response Example

{
"response": [

{
"count": 4,
"type": "CCR"

},
{

(continues on next page)

120 Chapter 4. Developer’s Guide

Traffic Control Documentation, Release 1.1.3

(continued from previous page)

"count": 55,
"type": "EDGE"

},
{

"type": "MID",
"count": 18

},
{

"count": 0,
"type": "REDIS"

},
{

"count": 4,
"type": "RASCAL"

}
"version": "1.1",

}

GET /api/1.1/servers/hostname/:name/details.json

Retrieves the details of a server.

Authentication Required: Yes

Request Route Parameters

Name Required Description
name yes The host name part of the cache.

Response Properties

Parameter Type Description
cachegroup string The cache group name (see Cache Group).
deliveryservices array Array of strings with the delivery service ids assigned (see Delivery Service).
domainName string The domain name part of the FQDN of the cache.
hardwareInfo hash Hwinfo struct (see hwinfo).
hostName string The host name part of the cache.
id string The server id (database row number).
iloIpAddress string The IPv4 address of the lights-out-management port.
iloIpGateway string The IPv4 gateway address of the lights-out-management port.
iloIpNetmask string The IPv4 netmask of the lights-out-management port.
iloPassword string The password of the of the lights-out-management user (displays as ** unless you are an ‘admin’ user).
iloUsername string The user name for lights-out-management.
interfaceMtu string The Maximum Transmission Unit (MTU) to configure for interfaceName.
interfaceName string The network interface name used for serving traffic.
ip6Address string The IPv6 address/netmask for interfaceName.
ip6Gateway string The IPv6 gateway for interfaceName.
ipAddress string The IPv4 address for interfaceName.
ipGateway string The IPv4 gateway for interfaceName.

Continued on next page

4.1. Developer’s Guide 121

Traffic Control Documentation, Release 1.1.3

Table 7 – continued from previous page
Parameter Type Description
ipNetmask string The IPv4 netmask for interfaceName.
lastUpdated string The Time/Date of the last update for this server.
mgmtIpAddress string The IPv4 address of the management port (optional).
mgmtIpGateway string The IPv4 gateway of the management port (optional).
mgmtIpNetmask string The IPv4 netmask of the management port (optional).
physLocation string The physical location name (see Physical Location).
profile string The assigned profile name (see Profiles).
rack string A string indicating rack location.
routerHostName string The human readable name of the router.
routerPortName string The human readable name of the router port.
status string The Status string (See Status).
tcpPort string The default TCP port on which the main application listens (80 for a cache in most cases).
type string The name of the type of this server (see Types).
xmppId string Deprecated.
xmppPasswd string Deprecated.

Response Example

{
"response": {

"cachegroup": "us-il-chicago",
"deliveryservices": [

"1",
"2",
"3",
"4"

],
"domainName": "chi.kabletown.net",
"hardwareInfo": {

"Physical Disk 0:1:3": "D1S2",
"Physical Disk 0:1:2": "D1S2",
"Physical Disk 0:1:15": "D1S2",
"Power Supply.Slot.2": "04.07.15",
"Physical Disk 0:1:24": "YS08",
"Physical Disk 0:1:1": "D1S2",
"Model": "PowerEdge R720xd",
"Physical Disk 0:1:22": "D1S2",
"Physical Disk 0:1:18": "D1S2",
"Enterprise UEFI Diagnostics": "4217A5",
"Lifecycle Controller": "1.0.8.42",
"Physical Disk 0:1:8": "D1S2",
"Manufacturer": "Dell Inc.",
"Physical Disk 0:1:6": "D1S2",
"SysMemTotalSize": "196608",
"PopulatedDIMMSlots": "24",
"Physical Disk 0:1:20": "D1S2",
"Intel(R) Ethernet 10G 2P X520 Adapter": "13.5.7",
"Physical Disk 0:1:14": "D1S2",
"BACKPLANE FIRMWARE": "1.00",
"Dell OS Drivers Pack, 7.0.0.29, A00": "7.0.0.29",
"Integrated Dell Remote Access Controller": "1.57.57",
"Physical Disk 0:1:5": "D1S2",
"ServiceTag": "D6XPDV1",
"PowerState": "2",

(continues on next page)

122 Chapter 4. Developer’s Guide

Traffic Control Documentation, Release 1.1.3

(continued from previous page)

"Physical Disk 0:1:23": "D1S2",
"Physical Disk 0:1:25": "D903",
"BIOS": "1.3.6",
"Physical Disk 0:1:12": "D1S2",
"System CPLD": "1.0.3",
"Physical Disk 0:1:4": "D1S2",
"Physical Disk 0:1:0": "D1S2",
"Power Supply.Slot.1": "04.07.15",
"PERC H710P Mini": "21.0.2-0001",
"PowerCap": "689",
"Physical Disk 0:1:16": "D1S2",
"Physical Disk 0:1:10": "D1S2",
"Physical Disk 0:1:11": "D1S2",
"Lifecycle Controller 2": "1.0.8.42",
"BP12G+EXP 0:1": "1.07",
"Physical Disk 0:1:9": "D1S2",
"Physical Disk 0:1:17": "D1S2",
"Broadcom Gigabit Ethernet BCM5720": "7.2.20",
"Physical Disk 0:1:21": "D1S2",
"Physical Disk 0:1:13": "D1S2",
"Physical Disk 0:1:7": "D1S2",
"Physical Disk 0:1:19": "D1S2"

},
"hostName": "atsec-chi-00",
"id": "19",
"iloIpAddress": "172.16.2.6",
"iloIpGateway": "172.16.2.1",
"iloIpNetmask": "255.255.255.0",
"iloPassword": "********",
"iloUsername": "",
"interfaceMtu": "9000",
"interfaceName": "bond0",
"ip6Address": "2033:D0D0:3300::2:2/64",
"ip6Gateway": "2033:D0D0:3300::2:1",
"ipAddress": "10.10.2.2",
"ipGateway": "10.10.2.1",
"ipNetmask": "255.255.255.0",
"mgmtIpAddress": "",
"mgmtIpGateway": "",
"mgmtIpNetmask": "",
"physLocation": "plocation-chi-1",
"profile": "EDGE1_CDN1_421_SSL",
"rack": "RR 119.02",
"routerHostName": "rtr-chi.kabletown.net",
"routerPortName": "2",
"status": "ONLINE",
"tcpPort": "80",
"type": "EDGE",
"xmppId": "atsec-chi-00-dummyxmpp",
"xmppPasswd": "X"

}
"version": "1.1",

}

4.1. Developer’s Guide 123

Traffic Control Documentation, Release 1.1.3

POST /api/1.1/servercheck

Post a server check result to the serverchecks table.

Authentication Required: Yes

Request Route Parameters

Name Required Description
id yes
host_name yes
servercheck_short_name yes
value yes

Request Example

{
"id": "",
"host_name": "",
"servercheck_short_name": "",
"value": ""
}

Response Content Type: application/json

Response Properties

Parameter Type Description
alerts array A collection of alert messages.
>level string Success, info, warning or error.
>text string Alert message.
version string

Response Example

Response Example:

{
"alerts":

[
{
"level": "success",
"text": "Server Check was successfully updated."

}
],

"version": "1.1"
}

Static DNS Entries

GET /api/1.1/staticdnsentries.json

Authentication Required: Yes

124 Chapter 4. Developer’s Guide

Traffic Control Documentation, Release 1.1.3

Response Properties

Parameter Type Description
TBD array

Response Example

TBD

Status

GET /api/1.1/statuses.json

Retrieves a list of the server status codes available. May be useful when the status is retrieved from other
APIs as a number and not a string.

Authentication Required: Yes

Response Properties

Parameter Type Description
lastUpdated string The Time / Date this server entry was last updated
name string The string equivalent of the status
id string The id with which Traffic Ops stores this status, and references it internally
description string A short description of the status

Response Example

{
"response": [

{
"description": "Temporary down. Edge: XMPP client will send status

→˓OFFLINE to CCR, otherwise similar to REPORTED. Mid: Server will not be
→˓included in parent.config files for its edge caches",

"id": "4",
"name": "ADMIN_DOWN",
"lastUpdated": "2013-02-13 16:34:29"

},
{

"lastUpdated": "2013-02-13 16:34:29",
"name": "CCR_IGNORE",
"id": "5",
"description": "Edge: 12M will not include caches in this state in CCR

→˓config files. Mid: N\/A for now"
},
{
"description": "Edge: Puts server in CCR config file in this state,

→˓but CCR will never route traffic to it. Mid: Server will not be included
→˓in parent.config files for its edge caches",

"id": "1",
"lastUpdated": "2013-02-13 16:34:29",
"name": "OFFLINE"

},
{

"id": "2",

(continues on next page)

4.1. Developer’s Guide 125

Traffic Control Documentation, Release 1.1.3

(continued from previous page)

"description": "Edge: Puts server in CCR config file in this state,
→˓and CCR will always route traffic to it. Mid: Server will be included in
→˓parent.config files for its edges",

"lastUpdated": "2013-02-13 16:34:29",
"name": "ONLINE"

},
{

"id": "3",
"description": "Edge: Puts server in CCR config file in this state,

→˓and CCR will adhere to the health protocol. Mid: N\/A for now",
"name": "REPORTED",
"lastUpdated": "2013-02-13 16:34:29"

}
],
"version": "1.1"

}

System

GET /api/1.1/system/info.json

Authentication Required: Yes

Response Properties

Key Type Description
parametershash This is a hash with the parameter names that describe the Traffic Ops installation as

keys. These are all the parameters in the GLOBAL profile.
>tm.
toolname

string The name of the Traffic Ops tool. Usually “Traffic Ops”. Used in the About
screen and in the comments headers of the files generated (# DO NOT EDIT
- Generated for atsec-lax-04 by Traffic Ops (https://
traffops.kabletown.net/) on Fri Mar 6 05:15:15 UTC 2015).

>tm.
instance_name

string The name of the Traffic Ops instance. Can be used when multiple instances are
active. Visible in the About page.

>traffic_rtr_fwd_proxystring When collecting stats from Traffic Router, Traffic Ops uses this forward proxy to pull
the stats through. This can be any of the MID tier caches, or a forward cache specif-
ically deployed for this purpose. Setting this variable can significantly lighten the
load on the Traffic Router stats system and it is recommended to set this parameter
on a production system.

>tm.
url

string The URL for this Traffic Ops instance. Used in the About screen and in the com-
ments headers of the files generated (# DO NOT EDIT - Generated for
atsec-lax-04 by Traffic Ops (https://traffops.kabletown.
net/) on Fri Mar 6 05:15:15 UTC 2015).

>traffic_mon_fwd_proxystring When collecting stats from Traffic Monitor, Traffic Ops uses this forward proxy to
pull the stats through. This can be any of the MID tier caches, or a forward cache
specifically deployed for this purpose. Setting this variable can significantly lighten
the load on the Traffic Monitor system and it is recommended to set this parameter
on a production system.

>tm.
logourl

string This is the URL of the logo for Traffic Ops and can be relative if the logo is under
traffic_ops/app/public.

>tm.
infourl

string This is the “for more information go here” URL, which is visible in the About page.

126 Chapter 4. Developer’s Guide

Traffic Control Documentation, Release 1.1.3

Response Example

{
"response": {

"parameters": {
"tm.toolname": "Traffic Ops",
"tm.infourl": "http:\/\/staging-03.cdnlab.kabletown.net\/tm\/info",
"traffic_mon_fwd_proxy": "http:\/\/proxy.kabletown.net:81",
"traffic_rtr_fwd_proxy": "http:\/\/proxy.kabletown.net:81",
"tm.logourl": "\/images\/tc_logo.png",
"tm.url": "https:\/\/tm.kabletown.net\/",
"tm.instance_name": "Kabletown CDN"

}
},
"version": "1.1"

}

TO Extensions

GET /api/1.1/to_extensions.json

Retrieves the list of extensions.

Authentication Required: Yes

Response Content Type: application/json

Return Values

Parameter Type Description
script_file string
version string
name string
description string
info_url string
additional_config_json string
isactive string
id string
type string
servercheck_short_name string

Response Example

{
“response”: [

{
script_file: "ping",
version: "1.0.0",
name: "ILO_PING",
description: null,
info_url: "http://foo.com/bar.html",
additional_config_json: "{ "path": "/api/1.1/servers.json",

→˓"match": { "type": "EDGE"}, "select": "ilo_ip_address", "cron": "9 * * * *" }",
isactive: "1",
id: "1",

(continues on next page)

4.1. Developer’s Guide 127

Traffic Control Documentation, Release 1.1.3

(continued from previous page)

type: "CHECK_EXTENSION_BOOL",
servercheck_short_name: "ILO"

},
{

script_file: "ping",
version: "1.0.0",
name: "10G_PING",
description: null,
info_url: "http://foo.com/bar.html",
additional_config_json: "{ "path": "/api/1.1/servers.json",

→˓"match": { "type": "EDGE"}, "select": "ip_address", "cron": "18 * * * *" }",
isactive: "1",
id: "2",
type: "CHECK_EXTENSION_BOOL",
servercheck_short_name: "10G"

}
],
“version”: "1.1"

}

POST /api/1.1/to_extensions

Creates a Traffic Ops extension.

Authentication Required: Yes

Request Parameters

Parameter Type Description
name string
version string
info_url string
script_file string
isactive string
additional_config_json string
description string
servercheck_short_name string
type string

Request Example

{
"name": "ILO_PING",
"version": "1.0.0",
"info_url": "http://foo.com/bar.html",
"script_file": "ping",
"isactive": "1",
"additional_config_json": "{ "path": "/api/1.1/servers.json", "match":

→˓{ "type": "EDGE"}",
"description": null,
"servercheck_short_name": "ILO"

(continues on next page)

128 Chapter 4. Developer’s Guide

Traffic Control Documentation, Release 1.1.3

(continued from previous page)

"type": "CHECK_EXTENSION_BOOL",
}

Response Content Type: application/json

Response Properties

Parameter Type Description
alerts array A collection of alert messages.
>level string Success, info, warning or error.
>text string Alert message.

Response Example

{
"alerts": [

{
"level": "success",
"text": "Check Extension loaded."

}
],
"version": "1.1"
}

POST /api/1.1/to_extensions/:id/delete

Deletes a Traffic Ops extension.

Authentication Required: Yes

Request Route Parameters

Name Required Description
id yes TO extension id

Response Content Type: application/json

Response Properties

Parameter Type Description
alerts array A collection of alert messages.
>level string Success, info, warning or error.
>text string Alert message.

Response Example

{
"alerts": [

{
"level": "success",

(continues on next page)

4.1. Developer’s Guide 129

Traffic Control Documentation, Release 1.1.3

(continued from previous page)

"text": "Extension deleted."
}

],
"version": "1.1"
}

Types

GET /api/1.1/types.json

Authentication Required: Yes

Response Properties

Parameter Type Description
lastUpdated string
useInTable string
name string
id string
description string

Response Example

{
"response": [

{
"lastUpdated": "2013-10-23 15:28:31",
"useInTable": "staticdnsentry",
"name": "AAAA_RECORD",
"id": "22",
"description": "Static DNS AAAA entry"

}
],
"version": "1.1"
}

GET /api/1.1/types/trimmed.json

Authentication Required: Yes

Response Content Type: application/json

Response Properties

Parameter Type Description
name string

Response Example

130 Chapter 4. Developer’s Guide

Traffic Control Documentation, Release 1.1.3

{
"response": [

{
"name": "AAAA_RECORD"

},
{

"name": "ACTIVE_DIRECTORY"
},
{

"name": "A_RECORD"
},
{

"name": "CCR"
}

],
"version": "1.1"
}

Users

GET /api/1.1/users.json

Retrieves all users.

Authentication Required: Yes

Response Properties

Parameter Type Description
email string
city string
id hash
phoneNumber string
company string
country string
fullName string
localUser string
uid string
username string
rolename string
newUser string
addressLine2 string
role string
addressLine1 string
postalCode string
gid string

Response Example

[
{

"email": "email@email.com",
"city": "",
"id": "54",

(continues on next page)

4.1. Developer’s Guide 131

Traffic Control Documentation, Release 1.1.3

(continued from previous page)

"phoneNumber": "",
"company": "",
"country": "",
"fullName": "Bob Simpson",
"localUser": false,
"uid": "0",
"stateOrProvince": "",
"username": "bsimpson",
"rolename": "portal",
"newUser": true,
"addressLine2": "",
"role": "6",
"addressLine1": "",
"postalCode": "",
"gid": "0"

}
]

GET /api/1.1/user/current.json

Retrieves the profile for the authenticated user.

Authentication Required: Yes

Request Properties

Parameter Type Description
email string
city string
id string
phoneNumber string
company string
country string
fullName string
localUser boolean
uid string
stateOrProvince string
username string
newUser boolean
addressLine2 string
role string
addressLine1 string
gid string
postalCode string

Response Example

{
“response”: {

“email”: "email@email.com",

(continues on next page)

132 Chapter 4. Developer’s Guide

Traffic Control Documentation, Release 1.1.3

(continued from previous page)

“city”: "",
“id”: "50",
“phoneNumber”: "",
“company”: "",
“country”: "",
“fullName”: "Tom Callahan",
“localUser”: true,
“uid”: "0",
“stateOrProvince”: "",
“username”: "tommyboy",
“newUser”: false,
“addressLine2”: "",
“role”: "6",
“addressLine1”: "",
“gid”: "0",
“postalCode”: ""

},
“version”: "1.1"

}

POST /api/1.1/user/current/update

Updates the date for the authenticated user.

Authentication Required: Yes

Request Properties

Parameter Type Description
email string
city string
id string
phoneNumber string
company string
country string
fullName string
localUser boolean
uid string
stateOrProvince string
username string
newUser boolean
addressLine2 string
role string
addressLine1 string
gid string
postalCode string

Request Example

4.1. Developer’s Guide 133

Traffic Control Documentation, Release 1.1.3

{
"user": {

"email": "",
"city": "",
"id": "",
"phoneNumber": "",
"company": "",
"country": "",
"fullName": "",
"localUser": true,
"uid": "0",
"stateOrProvince": "",
"username": "tommyboy",
"newUser": false,
"addressLine2": "",
"role": "6",
"addressLine1": "",
"gid": "0",
"postalCode": ""

}
}

Response Properties

Parameter Type Description
alerts array A collection of alert messages.
>level string Success, info, warning or error.
>text string Alert message.
version string

Response Example

{
"alerts": [

{
"level": "success",
"text": "UserProfile was successfully updated."

}
],
"version": "1.1"

}

GET /api/1.1/user/current/jobs.json

Retrieves user purge jobs.

Authentication Required: Yes

Response Properties

134 Chapter 4. Developer’s Guide

Traffic Control Documentation, Release 1.1.3

Parameter Type Description
keyword string
objectName string
assetUrl string
assetType string
status string
dsId string
dsXmlId string
username boolean
parameters string
enteredTime string
objectType string
agent string
id string
startTime string
version string

Response Example

{
"response": [

{
"id": "1",
"keyword": "PURGE",
"objectName": null,
"assetUrl": "",
"assetType": "file",
"status": "PENDING",
"dsId": "73",
"dsXmlId": "cim-jitp",
"username": "peewee",
"parameters": "TTL:56h",
"enteredTime": "2015-01-21 18:00:16",
"objectType": null,
"agent": "",
"startTime": "2015-01-21 10:45:38"

}
],
"version": "1.1"
}

POST/api/1.1/user/current/jobs

Creates a purge job.

Authentication Required: Yes

Request Properties

4.1. Developer’s Guide 135

Traffic Control Documentation, Release 1.1.3

Parameter Type Description
dsId string
dsXmlId string
regex string
startTime string
ttl int

Request Example

{
"dsId": "73",
"dsXmlId": "cim-jitp",
"regex": "/path/to/content.jpg",
"startTime": "2015-01-27 11:08:37",
"ttl": 54

}

Response Content Type: application/json

Response Properties

Parameter Type Description
alerts array A collection of alert messages.
>level string Success, info, warning or error.
>text string Alert message.
version string

Response Example

{
“alerts”:

[
{

“level”: "success",
“text”: "Successfully created purge job for: ."

}
],

“version”: "1.1"
}

POST /api/1.1/user/login { u: ‘’, p: ‘’ }

Authentication of a user using username and password. Traffic Ops will send back a session cookie.

Authentication Required: No

Request Properties

Parameter Type Description
u string username
p string password

136 Chapter 4. Developer’s Guide

Traffic Control Documentation, Release 1.1.3

Request Example

{
"u": "username",
"p": "password"

}

Response Content Type: application/json

Response Properties

Parameter Type Description
alerts array A collection of alert messages.
>level string Success, info, warning or error.
>text string Alert message.
version string

Response Example

{
"alerts": [

{
"level": "success",
"text": "Successfully logged in."

}
],
"version": "1.1"

}

GET /api/1.1/user/:id/deliveryservices/available.json

Authentication Required: Yes

Request Route Parameters

Name Required Description
id yes

Response Properties

Parameter Type Description
xmlId string
id string

Response Example

{
"response": [

{
"xmlId": "ns-img",

(continues on next page)

4.1. Developer’s Guide 137

Traffic Control Documentation, Release 1.1.3

(continued from previous page)

"id": "90"
},
{

"xmlId": "ns-img-secure",
"id": "280"

}
],
"version": "1.1"
}

POST /api/1.1/user/login/token

Authentication of a user using a token.

Authentication Required: No

Request Route Properties

Parameter Type Description
t string token-value

Request Example

{
"t": "token-value"
}

Response Content Type: application/json

Response Properties

Parameter Type Description
alerts array
>level string
>text string
version string

Response Example

{
"alerts": [

{
"level": "error",
"text": "Unauthorized, please log in."

}
],
"version": "1.1"
}

138 Chapter 4. Developer’s Guide

Traffic Control Documentation, Release 1.1.3

POST /api/1.1/user/logout

User logout. Invalidates the session cookie.

Authentication Required: Yes

Response Properties

Parameter Type Description
alerts array

• level
string

• text
string

version string

Response Example

{
"alerts": [

{
"level": "success",
"text": "You are logged out."

}
],
"version": "1.1"
}

POST /api/1.1/user/reset_password

Reset user password.

Authentication Required: No

Request Properties

Parameter Type Description
email string The email address of the user to initiate password reset.

Request Example

{
"email": "email@email.com"
}

Response Properties

4.1. Developer’s Guide 139

Traffic Control Documentation, Release 1.1.3

Parameter Type Description
alerts array A collection of alert messages.

• level
string Success, info, warning or error.

• text
string Alert message.

version string

Response Example

{
"alerts": [

{
"level": "success",
"text": "Successfully logged in."

}
],
"version": "1.1"
}

4.1.2 Traffic Router

Introduction

Traffic Router is a Java Tomcat application that routes clients to the closest available cache on the CDN using both
HTTP and DNS. Cache availability is determined by Traffic Monitor; consequently Traffic Router polls Traffic Monitor
for its configuration and cache health state information, and uses this data to make routing decisions. HTTP routing is
performed by localizing the client based on the request’s source IP address (IPv4 or IPv6), and issues an HTTP 302
redirect to the nearest cache. HTTP routing utilizes consistent hashing on request URLs to optimize cache performance
and request distribution. DNS routing is performed by localizing clients, resolvers in most cases, requesting A and
AAAA records for a configurable name such as edge.deliveryservice.somecdn.net. Traffic Router is
comprised of four separate Maven modules:

• api - Provides a simple JSON interface into certain aspects of core and is deployed as a WAR to a Service (read:
connector/listen port) within Tomcat which is separate from core

• connector - A JAR that overrides Tomcat’s standard Http11Protocol Connector class and allows Traffic Router
to delay opening listen sockets until it is in a state suitable for routing traffic

• core - Services DNS and HTTP requests, performs localization on routing requests, and is deployed as a WAR
to a Service (read: connector/listen port) within Tomcat which is separate from api

• rpm - A simple Maven project which gathers the artifacts from the prior three modules and builds an RPM

Software Requirements

To work on Traffic Router you need a *nix (MacOS and Linux are most commonly used) environment that has the
following installed:

• Eclipse >= Kepler SR2 (or another Java IDE)

• Maven >= 3.3.1

• JDK >= 6.0

140 Chapter 4. Developer’s Guide

Traffic Control Documentation, Release 1.1.3

Traffic Router Project Tree Overview

• traffic_control/traffic_traffic_router/ - base directory for Traffic Router

– api/ - Source code for Traffic Router API, which is built as its own deployable WAR file and communi-
cates with Traffic Router Core using JMX

* src/main - Main source directory for Traffic Router API

· java/ - Java source code for Traffic Router API

· resources/ - Spring resources pulled in during an RPM build

· webapp/ - Java webapp resources

* src/test - Test source directory for Traffic Router API

· java/ - JUnit based unit tests for Traffic Router API

· resources/ - Resources pulled in by unit tests

– connector/ - Source code for Traffic Router Connector;

* src/main/java - Java source directory for Traffic Router Connector

– core/ - Source code for Traffic Router Core, which is built as its own deployable WAR file and commu-
nicates with Traffic Router API using JMX

* src/main - Main source directory for Traffic Router Core

· etc/init.d - Init script for Tomcat

· conf/ - Configuration files

· java/ - Java source code for Traffic Router Core

· opt/tomcat/conf - Contains Tomcat configuration file(s) pulled in during an RPM build

· resources/ - Resources pulled in during an RPM build

· scripts/ - Scripts used by the RPM build process

· webapp/ - Java webapp resources

* src/test - Test source directory for Traffic Router Core

· db - Files downloaded by unit tests

· java/ - JUnit based unit tests for Traffic Router Core

· resources/ - Configuration files used by unit tests

· var/auto-zones - BIND formatted zone files generated by Traffic Router Core during unit
testing

Java Formatting Conventions

None at this time. The codebase will eventually be formatted per Java standards.

Installing The Developer Environment

To install the Traffic Router Developer environment:

1. Clone the traffic_control repository using Git.

4.1. Developer’s Guide 141

Traffic Control Documentation, Release 1.1.3

2. Change directories into traffic_control/traffic_router.

3. If you are not running Traffic Monitor locally (http://localhost:8080) from within Eclipse, edit the following
parameter in core/src/test/resources/traffic_monitor.properties and point it to an instance, or instances of Traffic
Monitor for your chosen CDN:

Parameter Value
traffic_monitor.
bootstrap.hosts

FQDN and port of the Traffic Monitor instance(s), separated by semicolons as
necessary (do not include http://).

4. Import the existing git repo into Eclipse:

(a) File -> Import -> Git -> Projects from Git; Next

(b) Existing local repository; Next

(c) Add -> browse to find traffic_control; Open

(d) Select traffic_control; Next

(e) Ensure “Import existing projects” is selected, expand traffic_control, select traffic_router;
Next

(f) Ensure traffic_router_api, traffic_router_connector, and
traffic_router_core are checked; Finish (this step can take several minutes to complete)

(g) Ensure traffic_router_api, traffic_router_connector, and
traffic_router_core have been opened by Eclipse after importing

5. From the terminal, run mvn clean verify from the traffic_router directory

6. Start the embedded Jetty instance for Core from within Eclipse

(a) In the package explorer, expand traffic_router_core

(b) Expand src/test/java

(c) Expand the package com.comcast.cdn.traffic_control.traffic_router.core

(d) Open and run TrafficRouterStart.java

Note: If an error is displayed in the Console, run mvn clean verify from the
traffic_router directory

7. Traffic Router Core should now be running; the HTTP routing interface is available on http://localhost:8081,
while the DNS server and routing interface is available on localhost:1053 via TCP and UDP.

Test Cases

Unit tests can be executed using Maven by running mvn test at the root of the traffic_router project.

API

Traffic Router API

142 Chapter 4. Developer’s Guide

http://localhost:8080
http://
http://localhost:8081

Traffic Control Documentation, Release 1.1.3

Traffic Router API

/crs/stats

General stats.

/crs/stats/ip/:ipaddress

Geolocation information for an IPv4 or IPv6 address.

/crs/locations

A list of configured cache groups.

/crs/locations/caches

A mapping of caches to cache groups and their current health state.

/crs/locations/:location/caches

A list of caches for this cache group only.

4.1.3 Traffic Monitor

Introduction

Traffic Monitor is a Java Tomcat application that monitors caches, provides health state information to Traffic Router,
and collects statistics for use in tools such as Traffic Ops and Traffic Stats. The health state provided by Traffic Monitor
is used by Traffic Router to control which caches are available on the CDN.

Software Requirements

To work on Traffic Monitor you need a *nix (MacOS and Linux are most commonly used) environment that has the
following installed:

• Eclipse >= Kepler SR2 (or another Java IDE)

• Maven >= 3.3.1

• JDK >= 6.0

4.1. Developer’s Guide 143

Traffic Control Documentation, Release 1.1.3

Traffic Monitor Project Tree Overview

• traffic_control/traffic_monitor/ - base directory for Traffic Monitor

– etc/ - Miscellaneous simulator utilities

– src/main - Main source directory for the Traffic Monitor

* bin/ - Configuration tools

* conf/ - Configuration files

* java/ - Java source code for Traffic Monitor

* opt/tomcat/conf - Contains Tomcat configuration file(s) pulled in during an RPM build

* resources/ - Resources pulled in during an RPM build

* scripts/ - Scripts used by the RPM build process

* webapp/ - Java webapp resources

– src/test - Test source directory for Traffic Monitor

* java/ - JUnit based unit tests for Traffic Monitor

* resources/conf - Configuration files used by unit tests

* resources/db - Files downloaded by unit tests

* resources/var - Files generated by unit tests

Java Formatting Conventions

None at this time. The codebase will eventually be formatted per Java standards.

Installing The Developer Environment

To install the Traffic Monitor Developer environment:

1. Clone the traffic_control repository using Git.

2. Change directories into traffic_control/traffic_monitor.

3. Edit the following parameters in src/test/resources/conf/traffic_monitor_config.js:

Parameter Value
tm.hostname FQDN of the Traffic Ops instance (do not include http://).
tm.username Admin username for Traffic Ops
tm.password Password for admin user
cdnName Name of the CDN this Traffic Monitor will monitor

4. Import the existing git repo into Eclipse:

(a) File -> Import -> Git -> Projects from Git; Next

(b) Existing local repository; Next

(c) Add -> browse to find traffic_control; Add

(d) Select traffic_control; Next

144 Chapter 4. Developer’s Guide

http://

Traffic Control Documentation, Release 1.1.3

(e) Ensure “Import existing projects” is selected, expand traffic_control, select
traffic_monitor; Next

(f) Ensure traffic_monitor is checked; Finish

(g) Ensure traffic_monitor has been opened by Eclipse after importing

5. Run mvn clean verify from the traffic_monitor directory

6. Start the embedded Jetty instance from within Eclipse

(a) In the package explorer, expand traffic_monitor

(b) Expand src/test/java

(c) Expand the package com.comcast.cdn.traffic_control.traffic_monitor

(d) Open and run Start.java

Note: If an error is displayed in the Console, run mvn clean verify from the
traffic_monitor directory

(e) With a web browser, navigate to http://localhost:8080

Test Cases

Unit tests can be executed using Maven by running mvn test at the root of the traffic_monitor project.

API

Traffic Monitor APIs

Traffic Monitor APIs

The Traffic Monitor URLs below allow certain query parameters for use in controlling the data returned. The optional
query parameters are the tabbed in values under each URL, if they exist.

/publish/EventLog

Log of recent events.

/publish/CacheStats

Statistics gathered for each cache.

Query Parameters

4.1. Developer’s Guide 145

http://localhost:8080

Traffic Control Documentation, Release 1.1.3

Parameter Type Description
hc int The history count, number of items to display.
stats string A comma separated list of stats to display.
wildcard boolean Controls whether specified stats should be treated as partial strings.

/publish/CacheStats/:cache

Statistics gathered for only this cache.

Query Parameters

Parameter Type Description
hc int The history count, number of items to display.
stats string A comma separated list of stats to display.
wildcard boolean Controls whether specified stats should be treated as partial strings.

/publish/DsStats

Statistics gathered for delivery services.

Query Parameters

Parameter Type Description
hc int The history count, number of items to display.
stats string A comma separated list of stats to display.
wildcard boolean Controls whether specified stats should be treated as partial strings.

/publish/DsStats/:deliveryService

Statistics gathered for this delivery service only.

Query Parameters

Parameter Type Description
hc int The history count, number of items to display.
stats string A comma separated list of stats to display.
wildcard boolean Controls whether specified stats should be treated as partial strings.

146 Chapter 4. Developer’s Guide

Traffic Control Documentation, Release 1.1.3

/publish/CrStates

The current state of this CDN per the health protocol.

raw

The current state of this CDN per this Traffic Monitor only.

/publish/CrConfig

The CrConfig served to and consumed by Traffic Router.

/publish/PeerStates

The health state information from all peer Traffic Monitors.

Query Parameters

Parameter Type Description
hc int The history count, number of items to display.
stats string A comma separated list of stats to display.
wildcard boolean Controls whether specified stats should be treated as partial strings.

/publish/Stats

The general statistics about Traffic Monitor.

/publish/StatSummary

The summary of cache statistics.

Query Parameters

4.1. Developer’s Guide 147

Traffic Control Documentation, Release 1.1.3

Parameter Type Description
startTime number Window start. The number of milliseconds since the epoch.
endTime number Window end. The number of milliseconds since the epoch.
hc int The history count, number of items to display.
stats string A comma separated list of stats to display.
wildcard boolean Controls whether specified stats should be treated as partial strings.
cache string Summary statistics for just this cache.

/publish/ConfigDoc

The overview of configuration options.

4.1.4 Traffic Stats

Introduction

Traffic Stats is a . . .

Software Requirements

To work on Traffic Stats you need a *nix (MacOS and Linux are most commonly used) environment that has the
following installed:

• ?

Traffic Stats Project Tree Overview

Go Formatting Conventions

Installing The Developer Environment

To install the Traffic Ops Developer environment:

1. Clone the traffic_control repository using Git.

Test Cases

The test harness . . .

4.1.5 Traffic Server

See the Apache Traffic Server documentation.

148 Chapter 4. Developer’s Guide

https://docs.trafficserver.apache.org/en/latest/index.html

CHAPTER 5

FAQ

5.1 FAQ

Table of Contents:

5.1.1 General

Who is using Traffic Control?

Comcast Cable Comcast is the original developer or Traffic Control and is using it for all it’s video
delivery to so-called ‘second screen applications’ (PCs, tablets, phones), but also for delivering im-
ages and software to it’s X1 platform, and other applications. The Traffic Control CDN at Comcast
serves more than a peta byte of content a day.

Cox Communications .

What is Rascal?

Rascal was the original name for Traffic Monitor. You will sometimes still see this name in the source, or
in older documents.

What is the CCR?

Comcast Content Router was the original name for Traffic Router. You will sometimes still see this name
in the source, or in older documents.

What is Twelve Monkeys?

Twelve Monkeys was the the original name for Traffic Ops. You will sometimes still see this name in the
source, or in older documents. It’s also a good movie.

149

http://www.comcast.com/
http://www.cox.com/

Traffic Control Documentation, Release 1.1.3

5.1.2 Development

How can I become involved?

5.1.3 Running a Traffic Control CDN

Why is my CRConfig.json rejected?

Especially in version 1.1.0, there’s a number of manual steps that need to be done after the initial install.
Make sure that after the initial install, you perform these steps in order:

Note: Even though Traffic Ops allows you to enter the servers with no IPv6 address information, the
CRConfig will not be accepted by Traffic Router without IPv6 address information for at least Traffic
Router and Traffic Monitor. Traffic Control assumes in a lot of places that all servers have at least an IPv4
and an IPv6 address. If you are not using IPv6, it is best to enter dummy addresses for all server types,
and turn IPv6 off in all delivery services. (https://github.com/Comcast/traffic_control/issues/44).

• Add users Not necessarily needed for getting your CRConfig accepted, but always a good idea.

• Add Divisions You will need at least one.

• Add Regions You will need at least one.

• Add Physical Locations You will need at least one.

• Add Mid tier Cache Groups You will need at least one.

• Add Edge tier Cache Groups

You will need at least one. After creating the edge cache group, go to Parameters >
All Profiles, type CDN_Name in the search box, and click “Edit” for any row of this
parameter. Then in the Parameter detail view, click the Add Cachegroup button,
select your newly created cachegroup, and click Save.

add CDN_Name parameter

• Add Traffic Monitors You will need to enter at least one Traffic Monitor - make sure to change
the server status to ONLINE.

• Add Traffic Routers You will need to enter at least one Traffic Router - make sure to change the
server status to ONLINE.

• Add Edges You will need at least one edge cache to make Traffic Router accept the CRConfig.

• Add Mid Technically you don’t need a mid tier, but if you have one, best to enter the info before
continuing.

• Change the polling.url parameters to reflect your CDN Set where to get the coverage
zone map, and the geo IP database.

• Create at least one delivery service, and assign at least one edge cache in REPORTED state to it.
Even if it is a dummy DS, without a single DS, the CRConfig will not be accepted by Traffic
Router.

• Snapshot CRConfig Tools > Snapshot CRConfig diff, and write.

Now you are ready to install the sw on Traffic Monitor and then Traffic Router.

150 Chapter 5. FAQ

https://github.com/Comcast/traffic_control/issues/44

CHAPTER 6

Indices and Tables

6.1 Glossary

302 content routing HTTP Content Routing.

astats (stats_over_http) An ATS plugin that allows you to monitor vitals of the ATS server. See Cache Monitoring.

cache A caching proxy server. See Caching Proxies.

cachegroup A group of caches that together create a combined larger cache using consistent hashing. See Cache
Group.

consistent hashing See the Wikipedia article; Traffic Control uses consistent hashing when using HTTP Content
Routing for the edge tier and when selecting parents in the mid tier.

content routing Directing clients (or client systems) to a particular location or device in a location for optimal
delivery of content See also HTTP Content Routing and DNS Content Routing.

coverage zone map The coverage zone map (czm) or coverage zone file (zcf) is a file that maps network prefixes to
cachegroups. See Localization.

delivery service A grouping of content in the CDN, usually a determined by the URL hostname. See Delivery
Service.

edge (tier or cache) Closest to the client or end-user. The edge tier is the tier that serves the client, edge caches are
caches in the edge tier. In a Traffic Control CDN the basic function of the edge cache is that of a Reverse Proxy.
See also Cache Group.

(traffic ops) extension Using extensions, Traffic Ops be extended to use proprietary checks or monitoring sources.
See Traffic Ops Extension.

forward proxy A proxy that works that acts like it is the client to the origin. See Forward Proxy.

geo localization or geo routing Localizing clients to the nearest caches using a geo database like the one from Max-
mind.

health protocol The protocol to monitor the health of all the caches. See Health Protocol.

localization Finding location on the network, or on planet earth. See Localization.

151

http://en.wikipedia.org/wiki/Consistent_hashing

Traffic Control Documentation, Release 1.1.3

mid (tier or cache) The tier above the edge tier. The mid tier does not directly serves the end-user and is used as an
additional layer between the edge and the origin. In a Traffic Control CDN the basic function of the mid cache
is that of a Forward Proxy. See also Cache Group.

origin The source of content for the CDN. Usually a redundant HTTP/1.1 webserver.

parent (cache or cachegroup) The (group of) cache(s) in the higher tier. See Cache Group.

profile A group of settings (parameters) that will be applied to a server. See Profile.

reverse proxy A proxy that acts like it is the origin to the client. See Reverse Proxy.

152 Chapter 6. Indices and Tables

Index

Symbols
(traffic ops) extension, 151
302 content routing, 151

A
astats (stats_over_http), 151

B
Bulk Upload Server, 37

C
cache, 151
Cache Control Header, 8
Cache Updates, 46
cachegroup, 151
CCR Profile, 42
CDN, 3
Change Log, 36
consistent hashing, 151
Content Delivery Network, 3
Content Routing, 14
content routing, 151
coverage zone map, 151

D
delivery service, 151
Delivery Service regexp, 44
Delivery Service Type, 40

E
edge (tier or cache), 151
Edge Health, 36

F
Forward Proxy, 6
forward proxy, 151

G
Generate ISO, 46

geo localization or geo routing, 151
Global Profile, 31

H
Header Rewrite, 41
HEADER_REGEXP, 44
Health, 36
health protocol, 151
Health Tab, 34
HOST_REGEXP, 44
HTTP, 3
HTTP 304, 8
http/1.1, 3

I
Invalidate Content, 47
ISO, 46

L
localization, 151
Log File Analysis, 3

M
mid (tier or cache), 152

O
origin, 152

P
parent (cache or cachegroup), 152
PATH_REGEXP, 44
profile, 152
Purge, 47

Q
Queue Updates, 46

R
Revalidation, 8

153

Traffic Control Documentation, Release 1.1.3

Reverse Proxy, 4
reverse proxy, 152

S
Server Assignments, 45
Signed URLs, 41
Snapshot CRConfig, 47
Static DNS Entries, 45

T
Token Based Authentication, 41
Traffic Monitor - Overview, 15
Traffic Ops - Installing, 21
Traffic Portal - Overview, 17
Traffic Router - Overview, 13
Traffic Router Profile, 42
Transparent Proxy, 8

154 Index

	CDN Basics
	CDN Basics

	Traffic Control Overview
	Traffic Control Overview

	Administrator’s Guide
	Administrator’s Guide

	Developer’s Guide
	Developer’s Guide

	FAQ
	FAQ

	Indices and Tables
	Glossary

