

Traffic Control

The vast majority of today’s Internet traffic is media files being sent from a single source to many thousands or even millions of destinations. Content Delivery Networks make that one-to-many distribution possible in an economical way.

Traffic Control is an Open Source implementation of a Content Delivery Network.

The following documentation sections are available:

CDN Basics

A review of the basic functionality of a Content Delivery Network.

	CDN Basics
	Content Delivery Networks

	HTTP 1.1

	Caching Proxies

	Cache Control Headers and Revalidation

Traffic Control Overview

An introduction to the Traffic Control architecture, components, and their integration.

	Traffic Control Overview
	Introduction

	Traffic Ops
	 Traffic Ops Extension

	Traffic Router
	 Delivery Service

	 Localization

	 DNS Content Routing

	 HTTP Content Routing

	Traffic Monitor
	 Cache Monitoring

	 Health Protocol

	Traffic Stats

	Traffic Portal

	Traffic Server
	 Cache Group

	 Profile

	Traffic Vault

Administrator’s Guide

How to deploy and manage a Traffic Control CDN.

	Administrator’s Guide
	Installing Traffic Ops
	System Requirements

	Navigating the Install

	Configuring Traffic Ops
	Installing the SSL Cert

	Content Delivery Networks

	Parameters an profiles

	Regions, Locations and Cache Groups

	Using Traffic Ops
	The Traffic Ops Menu

	Health

	Server

	Delivery Service

	Parameters and Profiles

	Tools

	Invalidate Content

	Generate DNSSEC Keys

	Managing Traffic Ops Extensions

	Traffic Monitor Administration
	Installing Traffic Monitor

	Configuring Traffic Monitor

	Troubleshooting and log files

	Traffic Router Administration
	Installing Traffic Router

	Configuring Traffic Router

	Troubleshooting and log files

	Traffic Stats Administration
	Installing Traffic Stats

	Configuring Traffic Stats

	Traffic Server Administration
	Installing Traffic Server

	Configuring Traffic Server

	Traffic Vault Administration
	Installing Traffic Vault

	Configuring Traffic Vault

Developer’s Guide

A guide to the various internal and external APIs, and a introduction for the Traffic Control developer.

	Developer’s Guide
	Traffic Ops
	Introduction

	Software Requirements

	Traffic Ops Project Tree Overview

	Perl Formatting Conventions

	Database Management

	Installing The Developer Environment

	Test Cases

	Extensions

	API

	Traffic Router
	Introduction

	Software Requirements

	Traffic Router Project Tree Overview

	Java Formatting Conventions

	Installing The Developer Environment

	Test Cases

	API

	Traffic Monitor
	Introduction

	Software Requirements

	Traffic Monitor Project Tree Overview

	Java Formatting Conventions

	Installing The Developer Environment

	Test Cases

	API

	Traffic Stats
	Introduction

	Software Requirements

	Traffic Stats Project Tree Overview

	Go Formatting Conventions

	Installing The Developer Environment

	Test Cases

	Traffic Server

FAQ

	FAQ
	General
	Who is using Traffic Control?

	What is Rascal?

	What is the CCR?

	What is Twelve Monkeys?

	Development
	How can I become involved?

	Running a Traffic Control CDN
	Why is my CRConfig.json rejected?

Indices and Tables

	Glossary

CDN Basics

Traffic Control is a CDN control plane, see the topics below to familiarize yourself with the basic concepts of a CDN.

	Content Delivery Networks

	HTTP 1.1

	Caching Proxies
	 Reverse Proxy

	 Forward Proxy

	 Transparent Proxy

	Cache Control Headers and Revalidation

Content Delivery Networks

The vast majority of today’s Internet traffic is media files (often video or audio) being sent from a single source (the Content Provider) to many thousands or even millions of destinations (the Content Consumers). Content Delivery Networks are the technology that make that one-to-many distribution possible in an economical way. A Content Delivery Network (CDN) is a distributed system of servers for delivering content over HTTP. These servers are deployed in multiple locations with the goal of optimizing the delivery of content to the end users, while minimizing the traffic on the network. A CDN typically consists of the following:

	
	Caching Proxies

	The proxy (cache or caching proxy) is a server that both proxies the requests and caches the results for reusing.

	
	Content Router

	The Content Router ensures that the end user is connected to the optimal cache for the location of the end user and content availability.

	
	Health Protocol

	The Health Protocol monitors the usage of the caches and tenants in the CDN.

	
	Configuration Management System

	In many cases a CDN encompasses hundreds of servers across a large geographic area. The Configuration Management System allows an operator to manage these servers.

	
	Log File Analysis System

	Every transaction in the CDN gets logged. The Log File Analysis System aggregates all of the log entries from all of the servers to a central location for analysis and troubleshooting.

HTTP 1.1

For a comprehensive look at Traffic Control, it is important to understand basic HTTP 1.1 protocol operations and how caches function. The example below illustrates the fulfillment of an HTTP 1.1 request in a situation without CDN or proxy, followed by viewing the changes after inserting different types of (caching) proxies. Several of the examples below are simplified for clarification of the essentials.

For complete details on HTTP 1.1 see RFC 2616 - Hypertext Transfer Protocol – HTTP/1.1 [https://www.ietf.org/rfc/rfc2616.txt].

Below are the steps of a client retrieving the URL http://www.origin.com/foo/bar/fun.html using HTTP/1.1 without proxies:

	The client sends a request to the Local DNS (LDNS) server to resolve the name www.origin.com to an IPv4 address.

	If the LDNS does not have this name (IPv4 mapping cached), it sends DNS requests to the ., .com, and .origin.com authoritative servers until it receives a response with the address for www.origin.com. Per the DNS SPEC, this response has a Time To Live (TTL), which indicates how long this mapping can be cached at the LDNS server. In the example, the IP address found by the LDNS server for www.origin.com is 44.33.22.11.

Note

While longer DNS TTLs of a day (86400 seconds) or more are quite common in other use cases, in CDN use cases DNS TTLs are often below a minute.

	The client opens a TCP connection from a random port locally to port 80 (the HTTP default) on 44.33.22.11, and sends this (showing the minimum HTTP 1.1 request, typically there are additional headers):

GET /foo/bar/fun.html HTTP/1.1
Host: www.origin.com

	The server at www.origin.com looks up the Host: header to match that to a configuration section, usually referred to as a virtual host section. If the Host: header and configuration section match, the search continues for the content of the path /foo/bar/fun.html, in the example, this is a file that contains <html><body>This is a fun file</body></html>, so the server responds with the following:

HTTP/1.1 200 OK
Content-Type: text/html; charset=UTF-8
Content-Length: 45

<html><body>This is a fun file</body></html>

At this point, HTTP transaction is complete.

Caching Proxies

The main function of a CDN is to proxy requests from clients to origin servers
and cache the results.
To proxy, in the CDN context, is to obtain content using HTTP from an origin
server on behalf of a client. To cache is to store the results so they can be
reused when other clients are requesting the same content. There are three
types of proxies in use on the Internet today which are described below.

[image: arrow] Reverse Proxy

A reverse proxy acts on behalf of the origin server. The client is mostly unaware it is communicating with a proxy and not the actual origin.
All EDGE caches in a Traffic Control CDN are reverse proxies.
To the end user a Traffic Control based CDN appears as a reverse proxy since
it retrieves content from the origin server, acting on behalf of that origin server. The client requests a URL that has
a hostname which resolves to the reverse proxy’s IP address and, in compliance
with the HTTP 1.1 specification, the client sends a Host: header to the reverse
proxy including the hostname in the URL. The proxy looks up the hostname in a
list of mappings to find the origin hostname; if the origin hostname is not found in the list, the proxy connects to the
origin host and requests the path of the original URL. The proxy then stores the URL in cache and serves the contents to the client. When there are subsequent requests for
the same URL, a caching proxy serves the content out of cache thereby reducing
latency and network traffic.

See also

ATS documentation on reverse proxy [https://docs.trafficserver.apache.org/en/latest/admin/reverse-proxy-http-redirects.en.html#http-reverse-proxy].

To insert a reverse proxy into the previous HTTP 1.1 example, the reverse proxy requires provisioning
for www.origin.com. By adding a remap rule to the cache, the reverse proxy then maps requests to
this origin. The content owner must inform the clients, by updating the URL, to receive the content
from the cache and not from the origin server directly. For this example, the remap rule on the
cache is: http://www-origin-cache.cdn.com http://www.origin.com.

Note

In the previous example minimal headers were shown on both the request and response. In the examples that follow, the origin server response is more realistic.

HTTP/1.1 200 OK
Date: Sun, 14 Dec 2014 23:22:44 GMT
Server: Apache/2.2.15 (Red Hat)
Last-Modified: Sun, 14 Dec 2014 23:18:51 GMT
ETag: "1aa008f-2d-50a3559482cc0"
Content-Length: 45
Connection: close
Content-Type: text/html; charset=UTF-8

<html><body>This is a fun file</body></html>

The client is given the URL http://www-origin-cache.cdn.com/foo/bar/fun.html (note the different hostname) and when attempting to obtain that URL, the following occurs:

	The client sends a request to the LDNS server to resolve the name www-origin-cache.cdn.com to an IPv4 address.

	Similar to the previous case, the LDNS server resolves the name www-origin-cache.cdn.com to an IPv4 address, in this example, this address is 55.44.33.22.

	The client opens a TCP connection from a random port locally, to port 80 (the HTTP default) on 55.44.33.22, and sends the following:

GET /foo/bar/fun.html HTTP/1.1
Host: www-origin-cache.cdn.com

	The reverse proxy looks up www-origin-cache.cdn.com in its remap rules, and finds the origin is www.origin.com.

	The proxy checks its cache to see if the response for http://www-origin-cache.cdn.com/foo/bar/fun.html is already in the cache.

6a. If the response is not in the cache:

	The proxy uses DNS to get the IPv4 address for www.origin.com, connect to it on port 80, and sends:

GET /foo/bar/fun.html HTTP/1.1
Host: www.origin.com

	The origin server responds with the headers and content as shown:

HTTP/1.1 200 OK
Date: Sun, 14 Dec 2014 23:22:44 GMT
Server: Apache/2.2.15 (Red Hat)
Last-Modified: Sun, 14 Dec 2014 23:18:51 GMT
ETag: "1aa008f-2d-50a3559482cc0"
Content-Length: 45
Connection: close
Content-Type: text/html; charset=UTF-8

<html><body>This is a fun file</body></html>

	The proxy sends the origin response on to the client adding a Via: header (and maybe others):

HTTP/1.1 200 OK
Date: Sun, 14 Dec 2014 23:22:44 GMT
Last-Modified: Sun, 14 Dec 2014 23:18:51 GMT
ETag: "1aa008f-2d-50a3559482cc0"
Content-Length: 45
Connection: close
Content-Type: text/html; charset=UTF-8
Age: 0
Via: http/1.1 cache01.cdn.kabletown.net (ApacheTrafficServer/4.2.1 [uScSsSfUpSeN:t cCSi p sS])
Server: ATS/4.2.1

 <html><body>This is a fun file</body></html>

6b. If it is in the cache:

The proxy responds to the client with the previously retrieved result:

HTTP/1.1 200 OK
Date: Sun, 14 Dec 2014 23:22:44 GMT
Last-Modified: Sun, 14 Dec 2014 23:18:51 GMT
ETag: "1aa008f-2d-50a3559482cc0"
Content-Length: 45
Connection: close
Content-Type: text/html; charset=UTF-8
Age: 39711
Via: http/1.1 cache01.cdn.kabletown.net (ApacheTrafficServer/4.2.1 [uScSsSfUpSeN:t cCSi p sS])
Server: ATS/4.2.1

<html><body>This is a fun file</body></html>

[image: arrow] Forward Proxy

A forward proxy acts on behalf of the client. The origin server is mostly
unaware of the proxy, the client requests the proxy to retrieve content from a
particular origin server. All MID caches in a Traffic Control based CDN are
forward proxies. In a forward proxy scenario, the client configuration is with
the proxy’s IP address and port. The client always connects to the forward
proxy for content. The content provider does not have to change the URL the
client obtains, and is unaware of the proxy in the middle.

See also

ATS documentation on forward proxy [https://docs.trafficserver.apache.org/en/latest/admin/forward-proxy.en.html].

Below is an example of the client retrieving the URL http://www.origin.com/foo/bar/fun.html through a forward proxy:

	The client requires configuration to use the proxy, as opposed to the reverse proxy example. Assume the client configuration is through preferences entries or other to use the proxy IP address 99.88.77.66 and proxy port 8080.

	To retrieve http://www.origin.com/foo/bar/fun.html URL, the client connects to 99.88.77.66 on port 8080 and sends:

GET http://www.origin.com/foo/bar/fun.html HTTP/1.1

Note

In this case, the client places the entire URL after GET, including protocol and hostname (http://www.origin.com), but in the reverse proxy and direct-to-origin case it puts only the path portion of the URL (/foo/bar/fun.html) after the GET.

	The proxy verifies whether the response for http://www-origin-cache.cdn.com/foo/bar/fun.html is already in the cache.

4a. If it is not in the cache:

	The proxy uses DNS to obtain the IPv4 address for www.origin.com, connects to it on port 80, and sends:

GET /foo/bar/fun.html HTTP/1.1
Host: www.origin.com

	The origin server responds with the headers and content as shown below:

HTTP/1.1 200 OK
Date: Sun, 14 Dec 2014 23:22:44 GMT
Server: Apache/2.2.15 (Red Hat)
Last-Modified: Sun, 14 Dec 2014 23:18:51 GMT
ETag: "1aa008f-2d-50a3559482cc0"
Content-Length: 45
Connection: close
Content-Type: text/html; charset=UTF-8

<html><body>This is a fun file</body></html>

	The proxy sends this on to the client adding a Via: header (and maybe others):

HTTP/1.1 200 OK
Date: Sun, 14 Dec 2014 23:22:44 GMT
Last-Modified: Sun, 14 Dec 2014 23:18:51 GMT
ETag: "1aa008f-2d-50a3559482cc0"
Content-Length: 45
Connection: close
Content-Type: text/html; charset=UTF-8
Age: 0
Via: http/1.1 cache01.cdn.kabletown.net (ApacheTrafficServer/4.2.1 [uScSsSfUpSeN:t cCSi p sS])
Server: ATS/4.2.1

<html><body>This is a fun file</body></html>

4b. If it is in the cache:

The proxy responds to the client with the previously retrieved result:

HTTP/1.1 200 OK
Date: Sun, 14 Dec 2014 23:22:44 GMT
Last-Modified: Sun, 14 Dec 2014 23:18:51 GMT
ETag: "1aa008f-2d-50a3559482cc0"
Content-Length: 45
Connection: close
Content-Type: text/html; charset=UTF-8
Age: 99711
Via: http/1.1 cache01.cdn.kabletown.net (ApacheTrafficServer/4.2.1 [uScSsSfUpSeN:t cCSi p sS])
Server: ATS/4.2.1

<html><body>This is a fun file</body></html>

[image: arrow] Transparent Proxy

Neither the origin nor the client are aware of the actions performed by the transparent proxies. A Traffic Control based CDN does not use transparent proxies. If you are interested you can learn more about transparent proxies on wikipedia [http://en.wikipedia.org/wiki/Proxy_server#Transparent_proxy].

Cache Control Headers and Revalidation

The HTTP/1.1 spec [https://www.ietf.org/rfc/rfc2616.txt] allows for origin servers and clients to influence how caches treat their requests and responses. By default, the Traffic Control CDN will honor cache control headers. Most commonly, origin servers will tell the downstream caches how long a response can be cached:

HTTP/1.1 200 OK
Date: Sun, 14 Dec 2014 23:22:44 GMT
Server: Apache/2.2.15 (Red Hat)
Last-Modified: Sun, 14 Dec 2014 23:18:51 GMT
ETag: "1aa008f-2d-50a3559482cc0"
Cache-Control: max-age=86400
Content-Length: 45
Connection: close
Content-Type: text/html; charset=UTF-8

<html><body>This is a fun file</body></html>

In the above response, the origin server tells downstream caching systems that the maximum time to cache this response for is 86400 seconds. The origin can also add a Expires: header, explicitly telling the cache the time this response is to be expired. When a response is expired it usually doesn’t get deleted from the cache, but, when a request comes in that would have hit on this response if it was not expired, the cache revalidates the response. In stead of requesting the object again from the origin server, the cache will send a request to the origin indicating what version of the response it has, and asking if it has changed. If it changed, the server will send a 200 OK response, with the new data. If it has not changed, the origin server will send back a 304 Not Modified response indicating the response is still valid, and that the cache can reset the timer on the response expiration. To indicate what version the client (cache) has it will add an If-Not-Modified-Since: header, or an If-None-Match: header. For example, in the If-None-Match: case, the origin will send and ETag header that uniquely identifies the response. The client can use that in an revalidation request like:

GET /foo/bar/fun.html HTTP/1.1
If-None-Match: "1aa008f-2d-50a3559482cc0"
Host: www.origin.com

If the content has changed (meaning, the new response would not have had the same ETag) it will respond with 200 OK, like:

HTTP/1.1 200 OK
Date: Sun, 18 Dec 2014 3:22:44 GMT
Server: Apache/2.2.15 (Red Hat)
Last-Modified: Sun, 14 Dec 2014 23:18:51 GMT
ETag: "1aa008f-2d-50aa00feadd"
Cache-Control: max-age=604800
Content-Length: 49
Connection: close
Content-Type: text/html; charset=UTF-8

<html><body>This is NOT a fun file</body></html>

If the Content did not change (meaning, the response would have had the same ETag) it will respond with 304 Not Modified, like:

304 Not Modified
Date: Sun, 18 Dec 2014 3:22:44 GMT
Server: Apache/2.2.15 (Red Hat)
Last-Modified: Sun, 14 Dec 2014 23:18:51 GMT
ETag: "1aa008f-2d-50a3559482cc0"
Cache-Control: max-age=604800
Content-Length: 45
Connection: close
Content-Type: text/html; charset=UTF-8

Note that the 304 response only has headers, not the data.

Traffic Control Overview

Introduces the Traffic Control architecture, components, and their integration.

	Introduction

	Traffic Ops
	 Traffic Ops Extension

	Traffic Router
	 Delivery Service

	 Localization

	 DNS Content Routing

	 HTTP Content Routing

	Traffic Monitor
	 Cache Monitoring

	 Health Protocol

	Traffic Stats

	Traffic Portal

	Traffic Server
	 Cache Group

	 Profile

	Traffic Vault

Introduction

Traffic Control is a control plane for a CDN, which includes all of the components mentioned in the CDN Basics section, except for the Log File Analysis System. The caching software chosen for Traffic Control is Apache Traffic Server [http://trafficserver.apache.org/] (ATS). Although the current release only supports ATS as a cache, this may change with future releases.

Traffic Control was first developed at Comcast for internal use and released to Open Source in April of 2015.

Traffic Control implements the blue boxes in the architecture diagram below.

[image: ../_images/traffic_control_overview_3.png]
In the next sections each of these components will be explained further.

Traffic Ops

Traffic Ops is the tool for administration (configuration and monitoring) of all components in a Traffic Control CDN. The CDN administrator uses Traffic Ops to manage servers, cache groups, delivery services, etc. In many cases, a configuration change requires propagation to several, or even all, caches and only explicitly after or before the same change propagates to Traffic Router. Traffic Ops takes care of this required consistency between the different components and their configuration. Traffic Ops exposes its data through a series of HTTP APIs and has a user interface that is interactive and viewable using a standard web browser.

Traffic Ops uses a MySQL or PostgreSQL database to store the configuration information, and the Mojolicious framework [http://mojolicio.us/] to generate the user interface and APIs. Not all configuration data is in this database however; for sensitive data, like SSL private keys or token based authentication shared secrets, a separate key-value store is used, allowing the operator to harden the server that runs this key-value store better from a security perspective (i.e only allow Traffic Ops access it with a cert). The Traffic Ops server, by design, needs to be accessible from all the other servers in the Traffic Control CDN.

Traffic Ops generates all the application specific configuration files for the caches and other servers. The caches and other servers check in with Traffic Ops at a regular interval (default 15 minutes) to see if updated configuration files require application.

Traffic Ops also runs a collection of periodic checks to determine the operational readiness of the caches. These periodic checks are customizable by the Traffic Ops admin using extensions.

[image: arrow] Traffic Ops Extension

Traffic Ops Extensions are a way to enhance the basic functionality of Traffic Ops in a custom manner. There are three types of extensions:

	Check Extensions - Allows you to add custom checks to the “Health->Server Checks” view.

	Configuration Extension - Allows you to add custom configuration file generators.

	Data source Extensions - Allows you to add data sources for the graph views and usage APIs.

Traffic Router

Traffic Router’s function is to send clients to the most optimal cache. Optimal in this case is based on a number of factors:

	Distance between the cache and the client (not necessarily measured in meters, but quite often in layer 3 network hops). Less network distance between the client and cache yields better performance, and lower network load. Traffic Router helps clients connect to the best performing cache for their location at the lowest network cost.

	Availability of caches and health / load on the caches. A common issue in Internet and television distribution scenarios is having many clients attempting to retrieve the same content at the same time. Traffic Router helps clients route around overloaded or down caches.

	Availability of content on a particular cache. Reusing of content through cache HITs is the most important performance gain a CDN can offer. Traffic Router sends clients to the cache that is most likely to already have the desired content.

Traffic routing options are often configured at the Delivery Service level.

[image: arrow] Delivery Service

As discussed in the basic concepts section, the EDGE caches are configured as reverse proxies, and the Traffic Control CDN looks from the outside as a very large reverse proxy. Delivery Services are often referred to a reverse proxy remap rule. In most cases, a Delivery Service is a one to one mapping to a FQDN that is used as a hostname to deliver the content. Many options and settings regarding how to optimize the content delivery, which is configurable on a Delivery Service basis. Some examples of these Delivery Service settings are:

	Cache in RAM, cache on disk, or do not cache at all.

	Use DNS or HTTP Content routing (see below).

	Limits on transactions per second and bandwidth.

	Protocol (http or https).

	Token based authentication settings.

	Header rewrite rules.

Delivery Services are also for use in allowing multi-tenants to coexist in the Traffic Control CDN without interfering with each other, and to keep information about their content separated.

[image: arrow] Localization

Traffic Router uses a JSON input file called the coverage zone map to determine what cachegroup is closest to the client. If the client IP address is not in this coverage zone map, it falls back to geo, using the maxmind database to find the client’s location, and the geo coordinates from Traffic Ops for the cachegroup.

Traffic Router is inserted into the HTTP retrieval process by making it DNS authoritative for the domain of the CDN delivery service. In the example of the reverse proxy, the client was given the http://www-origin-cache.cdn.com/foo/bar/fun.html url. In a Traffic Control CDN, URLs start with either tr. or edge., for HTTP or DNS content routing respectively. These names are configurable via properties files within the Traffic Router installation.

[image: arrow] DNS Content Routing

For a DNS delivery service the client receives a URL with a hostname beginning with edge. (e.g. http://edge.dsname.cdn.com/foo/bar/fun.html). When the LDNS server is resolving this edge.dsname.cdn.com hostname to an IP address, it ends at Traffic Router because it is the authoritative DNS server for cdn.com and the domains below it, and subsequently responds with a list of IP addresses from the eligible caches based on the location of the LDNS server. When responding, Traffic Router does not know the actual client IP address or the path that the client is going to request. The decision on what cache IP address (or list of cache IP addresses) to return is solely based on the location of the LDNS server and the health of the caches. The client then connects to port 80 on the cache, and sends the Host: edge.dsname.cdn.com header. The configuration of the cache includes the remap rule http://edge.dsname.cdn.com http://origin.dsname.com to map that edge name to an origin hostname.

[image: arrow] HTTP Content Routing

For an HTTP delivery service the client receives a URL with a hostname beginning with tr. (e.g. http://tr.dsname.cdn.com/foo/bar/fun.html), the LDNS server resolves this tr.dsname.cdn.com to an IP address, but in this case Traffic Router returns its own IP address. The client opens a connection to port 80 on the Traffic Router’s IP address, and sends:

GET /foo/bar/fun.html HTTP/1.1
Host: tr.dsname.cdn.com

Traffic Router uses an HTTP 302 to redirect the client to the best cache. For example:

HTTP/1.1 302 Moved Temporarily
Server: Apache-Coyote/1.1
Location: http://atsec-nyc-02.dsname.cdn.com/foo/bar/fun.html
Content-Length: 0
Date: Tue, 13 Jan 2015 20:01:41 GMT

The information Traffic Router can consider when selecting a cache in this case is much better:

	The client’s IP address (the other side of the socket).

	The URL path the client is requesting.

	All HTTP 1.1 headers.

The client follows the redirect and performs a DNS request for the IP address for atsec-nyc-02.dsname.cdn.com, and normal HTTP steps follow, except the sending of the Host: header when connected to the cache is Host: atsec-nyc-02.dsname.cdn, and the configuration of the cache includes the remap rule (e.g.``http://atsec-nyc-02.dsname.cdn http://origin.dsname.com``).

Traffic Router sends all requests for the same path in a delivery service to the same cache in a cache group using consistent hashing, in this case all caches in a cache group are not carrying the same content, and there is a much larger combined cache in the cache group.

In many cases DNS content routing is the best possible option, especially in cases where the client is receiving small objects from the CDN like images and web pages.

Traffic Router is redundant and horizontally scalable by adding more instances into the DNS hierarchy using NS records.

Traffic Monitor

Traffic Monitor is a Java/Tomcat application that monitors the caches in a CDN for a variety of metrics. These metrics are for use in determining the overall health of a given cache and the related delivery services. A given CDN can operate a number of Traffic Monitors, from a number of geographically diverse locations, to prevent false positives caused by network problems at a given site.

Traffic Monitors operate independently, but use the state of other Traffic Monitors in conjunction with their own state, to provide a consistent view of CDN cache health to upstream applications such as Traffic Router. Health Protocol governs the cache and Delivery Service availability.

Traffic Monitor provides a view into CDN health using several RESTful JSON endpoints, which are consumed by other Traffic Monitors and upstream components such as Traffic Router. Traffic Monitor is also responsible for serving the overall CDN configuration to Traffic Router, which ensures that the configuration of these two critical components remain synchronized as operational and health related changes propagate through the CDN.

[image: arrow] Cache Monitoring

Traffic Monitor polls all caches configured with a status of REPORTED or ADMIN_DOWN at an interval specified as a configuration parameter in Traffic Ops. If the cache is set to ADMIN_DOWN it is marked as unavailable but still polled for availability and statistics. If the cache is explicitly configured with a status of ONLINE or OFFLINE, it is not polled by Traffic Monitor and presented to Traffic Router as configured, regardless of actual availability.

Traffic Monitor makes HTTP requests at regular intervals to a special URL on each EDGE cache and consumes the JSON output. The special URL is a plugin running on the Apache Traffic Server (ATS) caches called astats, which is restricted to Traffic Monitor only. The astats plugin provides insight into application and system performance, such as:

	Throughput (e.g. bytes in, bytes out, etc).

	Transactions (e.g. number of 2xx, 3xx, 4xx responses, etc).

	Connections (e.g. from clients, to parents, origins, etc).

	Cache performance (e.g.: hits, misses, refreshes, etc).

	Storage performance (e.g.: writes, reads, frags, directories, etc).

	System performance (e.g: load average, network interface throughput, etc).

Many of the application level statistics are available at the global or aggregate level, some at the Delivery Service (remap rule) level. Traffic Monitor uses the system level performance to determine the overall health of the cache by evaluating network throughput and load against values configured in Traffic Ops. Traffic Monitor also uses throughput and transaction statistics at the remap rule level to determine Delivery Service health.

If astats is unavailable due to a network related issue or the system statistics have exceeded the configured thresholds, Traffic Monitor will mark the cache as unavailable. If the delivery service statistics exceed the configured thresholds, the delivery service is marked as unavailable, and Traffic Router will start sending clients to the overflow destinations for that delivery service, but the cache remains available to serve other content,

See also

For more information on ATS Statistics, see the ATS documentation [https://docs.trafficserver.apache.org/en/latest/index.html]

[image: arrow] Health Protocol

Redundant Traffic Monitor servers operate independently from each other but take the state of other Traffic Monitors into account when asked for health state information. In the above overview of cache monitoring, the behavior of Traffic Monitor pertains only to how an individual instance detects and handles failures. The Health Protocol adds another dimension to the health state of the CDN by merging the states of all Traffic Monitors into one, and then taking the optimistic approach when dealing with a cache or Delivery Service that might have been marked as unavailable by this particular instance or a peer instance of Traffic Monitor.

Upon startup or configuration change in Traffic Ops, in addition to caches, Traffic Monitor begins polling its peer Traffic Monitors whose state is set to ONLINE. Each ONLINE Traffic Monitor polls all of its peers at a configurable interval and saves the peer’s state for later use. When polling its peers, Traffic Monitor asks for the raw health state from each respective peer, which is strictly that instance’s view of the CDN’s health. When any ONLINE Traffic Monitor is asked for CDN health by an upstream component, such as Traffic Router, the component gets the health protocol influenced version of CDN health (non-raw view).

In operation of the health protocol, Traffic Monitor takes all health states from all peers, including the locally known health state, and serves an optimistic outlook to the requesting client. This means that, for example, if three of the four Traffic Monitors see a given cache or Delivery Service as exceeding its thresholds and unavailable, it is still considered available. Only if all Traffic Monitors agree that the given object is unavailable is that state propagated to upstream components. This optimistic approach to the Health Protocol is counter to the “fail fast” philosophy, but serves well for large networks with complicated geography and or routing. The optimistic Health Protocol allows network failures or latency to occur without affecting overall traffic routing, as Traffic Monitors can and do have a different view of the network when deployed in geographically diverse locations. Short polling intervals of both the caches and Traffic Monitor peers help to reduce customer impact of outages.

It is not uncommon for a cache to be marked unavailable by Traffic Monitor - in fact, it is business as usual for many CDNs. A hot video asset may cause a single cache (say cache-03) to get close to it’s interface capacity, the health protocol “kicks in”, and Traffic Monitor marks cache-03 as unavailable. New clients want to see the same asset, and now, Traffic Router will send these customers to another cache (say cache-01) in the same cachegroup. The load is now shared between cache-01 and cache-03. As clients finish watching the asset on cache-03, it will drop below the threshold and gets marked available again, and new clients will now go back to cache-03 again.

It is less common for a delivery service to be marked unavailable by Traffic Monitor, the delivery service thresholds are usually used for overflow situations at extreme peaks to protect other delivery services in the CDN from getting impacted.

Traffic Stats

Traffic Stats is a utility written in Go that mines metrics from Traffic Monitor’s JSON APIs and stores the data locally in Redis for a short period of time. This data is inherently transient, rolls frequently, and is volatile due to the default in-memory nature of Redis. The transient nature of the data is acceptable, as this system’s purpose is to land data in Redis for other tools to consume.

Once in Redis, the data can be extracted and prepared to be sent elsewhere for long term storage. Any number of Traffic Stats instances may run on a given CDN to collect metrics from Traffic Monitor, however, redundancy and integration with a long term metrics storage system is implementation dependent. Traffic Stats does not influence overall CDN operation, but is required in order to display charts in Traffic Operations.

Traffic Portal

Traffic Portal is a user interface for CDN tenants to view performance, and in most cases, change settings of their delivery services. Traffic Portal is an Angular JS application written against the Traffic Ops APIs.

Note

The Traffic Portal is not being released to Open Source in the initial release.

Traffic Server

The caches in a Traffic Control CDN are servers running the Apache Traffic Server software. See ATS documentation [http://trafficserver.readthedocs.org/en/latest/] for more information. Caches in a Traffic Control CDN are deployed in cache groups.

[image: arrow] Cache Group

A cache group is a logical group of caches that Traffic Router tries to use as a combined cache. Traffic Router treats all servers in a cache group as though they are in the same physical location, though they are in fact only in the same region (network). A cache group has one single set of geographical coordinates even if the caches that make up the cache group are in different physical locations. The caches in a cache group are not aware of the other caches in the group - there is no clustering software or communications between caches in a cache group.

There are two types of cache groups: EDGE and MID. Traffic Control is a two tier system, where the clients get directed to the EDGE cache group. On cache miss, the cache in the EDGE cache group obtains content from a MID cache group, rather than the origin, which is shared with multiple EDGEs. EDGE cache groups are configured to have one single parent cache group.

Note

Often the EDGE to MID relationship is based on network distance, and does not necessarily match the geographic distance.

A cache group serves a particular part of the network as defined in the coverage zone file. See The Coverage Zone File and ASN Table.

Consider the example CDN below:

[image: ../_images/cache_groups_1.png]
There are two MID tier cache groups, each assigned with three EDGEs. The lax, den and chi EDGE locations are configured with the West MID as their parent, and the nyc, phl, and hou EDGEs, are configured with the East MID as their parent. On a cache miss, the EDGEs use their assigned parent.

All caches (and other servers) are assigned a Profile in Traffic Ops.

[image: arrow] Profile

A Profile is a set of configuration settings and parameters, applied to a server. For a typical cache there are hundreds of configuration settings to apply. The Traffic Ops parameter view contains the defined settings, and bundled into groups using Profiles. Traffic Ops allows for duplication, comparison, import and export of Profiles.

Traffic Vault

Traffic Vault is a keystore used for storing the following types of information:

	
	SSL Certificates

	
	Private Key

	CRT

	CSR

	
	DNSSEC Keys

	
	
	Key Signing Key

	
	private key

	public key

	
	Zone Signing Key

	
	private key

	public key

	URL Signing Keys

As the name suggests, Traffic Vault is meant to be a “vault” of private keys that only certain users are allowed to access. In order to create, add, and retrieve keys a user must have admin privileges. Keys can be created via the Traffic Ops UI, but they can only be retrieved via the Traffic Ops API. The keystore used by Traffic Vault is Riak [http://basho.com/riak/]. Traffic ops accesses Riak via https on port 8088. Traffic ops uses Riak’s rest API with username/password authentication. Information on the API can be found here [http://docs.basho.com/riak/latest/dev/references/http/].

Administrator’s Guide

Traffic Control is distributed in source form for the developer, but also as a binary package. This guide details how to install and configure a Traffic Control CDN using the binary packages, as well as how to perform common operations running a CDN.

	Installing Traffic Ops
	System Requirements

	Navigating the Install
	Upgrading Traffic Ops

	Configuring Traffic Ops
	Installing the SSL Cert

	Content Delivery Networks

	Parameters an profiles

	Regions, Locations and Cache Groups
	Creating the CentOS Kickstart File

	Using Traffic Ops
	The Traffic Ops Menu

	Health
	The Health Table

	Graph View

	Server Checks

	Daily Summary

	Server
	Server Types

	Bulk Upload Server

	Delivery Service
	Delivery Service Types

	Header Rewrite Options and DSCP

	Token Based Authentication

	Multi Site Origin

	CCR Profile or Traffic Router Profile

	Delivery Service Regexp

	Static DNS Entries

	Server Assignments

	The Coverage Zone File and ASN Table

	Parameters and Profiles

	Tools
	Generate ISO

	Queue Updates and Snapshot CRConfig

	Invalidate Content

	Generate DNSSEC Keys

	Managing Traffic Ops Extensions

	Traffic Monitor Administration
	Installing Traffic Monitor

	Configuring Traffic Monitor
	Configuration Overview

	Troubleshooting and log files

	Traffic Router Administration
	Installing Traffic Router

	Configuring Traffic Router

	Troubleshooting and log files

	Traffic Stats Administration
	Installing Traffic Stats

	Configuring Traffic Stats

	Traffic Server Administration
	Installing Traffic Server

	Configuring Traffic Server

	Traffic Vault Administration
	Installing Traffic Vault

	Configuring Traffic Vault
	Riak configuration file configuration

	Riak-admin configuration

	Traffic Ops Configuration

Installing Traffic Ops

System Requirements

The user must have the following for a successful install:

	CentOS 6

	4 vCPUs

	32GB RAM

	20 GB disk space

	YUM repository with minimally the following dependecies avaliable

	apr 1.3.9-5

	apr-util 1.3.9-3

	apr-util-ldap 1.3.9-3

	expat-devel 2.0.1-11

	genisoimage 1.1.9-12

	httpd 2.2.15

	httpd-tools 2.2.15

	libpcap-devel 14:1.4

	mod_ssl 1:2.2.15-29

	mysql 5.1.71

	autoconf 2.63-5.1.

	automake 1.11.1-4

	gcc 4.4.7-4

	gettext 0.17-16

	libcurl-devel 7.19.7-37

	libtool 2.2.6-15.5

	mysql-devel 5.1.73-3

	perl-CPAN 1.9402-136

	libcurl 7.19.7-37

	openssl 1.0.1e-30

	cloog-ppl 0.15.7-1.2

	cpp 4.4.7-4

	cvs 1.11.23-16

	libgomp 4.4.7-4

	libidn-devel 1.18-2

	m4 1.4.13-5

	mpfr 2.4.1-6

	perl-Digest-SHA 1:5.47-136

	ppl 0.10.2-11

	curl 7.19.7-37

	openssl-devel 1.0.1e-30

	Access to The Comprehensive Perl Archive Network (CPAN) [http://www.cpan.org/]

Note

The above versions are known to work on CentOS 6.5. Higher versions may work.

Note

Although Traffic Ops supports both MySQL and Postgres as a database, support for MySQL is more mature and better tested. It is best to use MySQL when first getting started, and the rest of this quide assumes MySQL as the database.

Navigating the Install

To begin the install:

	Install Traffipc Ops: sudo yum install traffic_ops

	After installation of Traffic Ops rpm enter the following command: sudo /opt/traffic_ops/install/bin/postinstall

Example output:

trafficops-vm # /opt/traffic_ops/install/bin/postinstall

This script will build and package the required Traffic Ops perl modules.
In order to complete this operation, Development tools such as the gcc
compiler must be installed on this machine.

Hit ENTER to continue:

The first thing the post install will do is install additional packages needed from the yum repo.

Ater that, it will automatically proceed to installing the required Perl packages from CPAN.

Note

Especially when installing Traffic Ops for the first time on a system this can take a long time, since many dependencies for the Mojolicous application need to be downloaded. Expect 30 minutes.

If there are any prompts in this phase, please just answer with the defaults (some CPAN installs can prompt for install questions).

When this phase is complete, you will see:

...
Successfully installed Test-Differences-0.63
Successfully installed DBIx-Class-Schema-Loader-0.07042
Successfully installed Time-HiRes-1.9726 (upgraded from 1.9719)
Successfully installed Mojolicious-Plugin-Authentication-1.26
113 distributions installed
Complete! Modules were installed into /opt/traffic_ops/app/local
Linking perl libraries...
Installing perl scripts

This script will initialize the Traffic Ops database.
Please enter the following information in order to completely
configure the Traffic Ops mysql database.

Database type [mysql]:

The next phase of the install will ask you about the local environment for your CDN.

Note

before proceeding to this step, the database has to have at least a root password, and needs to be started. When using mysql, please type service mysqld start as root in another terminal and follow the instructions on the screen to set the root passwd.

Note

CentOS files note.

Example output:

Database type [mysql]:
Database name [traffic_ops_db]:
Database server hostname IP or FQDN [localhost]:
Database port number [3306]:
Traffic Ops database user [traffic_ops]:
Password for traffic_ops:
Re-Enter password for traffic_ops:

Error: passwords do not match, try again.

Password for traffic_ops:
Re-Enter password for traffic_ops:

Database server root (admin) user name [root]:
Database server root password:
Database Type: mysql
Database Name: traffic_ops_db
Hostname: localhost
Port: 3306
Database User: traffic_ops
Is the above information correct (y/n) [n]: y

The database properties have been saved to /opt/traffic_ops/app/conf/production/database.conf

 The database configuration has been saved. Now we need to set some custom
 fields that are necessary for the CDN to function correctly.

Traffic Ops url [https://localhost]: https://traffic-ops.kabletown.net
Human-readable CDN Name. (No whitespace, please) [kabletown_cdn]:
DNS sub-domain for which your CDN is authoritative [cdn1.kabletown.net]:
Fully qualified name of your CentOS 6.5 ISO kickstart tar file, or 'na' to skip and add files later [/var/cache/centos65.tgz]: na
Fully qualified location to store your ISO kickstart files [/var/www/files]:

Traffic Ops URL: https://traffic-ops.kabletown.net
Traffic Ops Info URL: https://traffic-ops.kabletown.net/info
Domainname: cdn1.kabletown.net
CDN Name: kabletown_cdn
GeoLocation Polling URL: https://traffic-ops.kabletown.net/routing/GeoIP2-City.mmdb.gz
CoverageZone Polling URL: https://traffic-ops.kabletown.net/routing/coverage-zone.json

Is the above information correct (y/n) [n]: y
Parameter information has been saved to /opt/traffic_ops/install/data/json/parameters.json

Adding an administration user to the Traffic Ops database.

Administration username for Traffic Ops: admin
Password for the admin user admin:
Verify the password for admin:
Do you wish to create an ldap configuration for access to traffic ops [y/n] ? [n]: n
creating database
Creating database...
Creating user...
Flushing privileges...
setting up database
Executing 'drop database traffic_ops_db'
Executing 'create database traffic_ops_db'
Creating database tables...
Migrating database...
goose: migrating db environment 'production', current version: 0, target: 20150316100000
OK 20141222103718_extension.sql
OK 20150108100000_add_job_deliveryservice.sql
OK 20150205100000_cg_location.sql
OK 20150209100000_cran_to_asn.sql
OK 20150210100000_ds_keyinfo.sql
OK 20150304100000_add_ip6_ds_routing.sql
OK 20150310100000_add_bg_fetch.sql
OK 20150316100000_move_hdr_rw.sql
Seeding database...
Database initialization succeeded.
seeding profile data...
name EDGE1 description Edge 1
name TR1 description Traffic Router 1
name TM1 description Traffic Monitor 1
name MID1 description Mid 1
seeding parameter data...

Explanation of the information that needs to be provided:

	Field

	Description

	Database type

	mysql or postgres

	Database name

	The name of the database Traffic Ops uses to store the configuration information

	Database server hostname IP or FQDN

	The hostname of the database server

	Database port number

	The database port number

	Traffic Ops database user

	The username Traffic Ops will use to read/write from the database

	password for traffic ops

	The passwdord for the above database user

	Database server root (admin) user name

	Priviledged database user that has permission to create the database and user for Traffic Ops

	Database server root (admin) user password

	The password for the above priviledged database user

	Traffic Ops url

	The URL to connect to this instance of Traffic Ops, usually https://<traffic ops host FQDN>/

	Human-readable CDN Name

	The name of the first CDN traffic Ops will be managing

	DNS sub-domain for which your CDN is authoritative

	The DNS domain that will be delegated to this Traffic Control CDN

	name of your CentOS 6.5 ISO kickstart tar file

	See Creating the CentOS Kickstart File

	Administration username for Traffic Ops

	The Administration (highest privilege) Traffic Ops user to create;
use this user to login for the first time and create other users

	Password for the admin user

	The passwd for the above user

The postinstall script will now seed the database with some inital configuration settings for the CDN and the servers in the CDN.

The next phase is the download of the geo location database and configuration of information needed for SSL certificates.

Example output:

Downloading MaxMind data.
--2015-04-14 02:14:32-- http://geolite.maxmind.com/download/geoip/database/GeoLite2-City.mmdb.gz
Resolving geolite.maxmind.com... 141.101.115.190, 141.101.114.190, 2400:cb00:2048:1::8d65:73be, ...
Connecting to geolite.maxmind.com|141.101.115.190|:80... connected.
HTTP request sent, awaiting response... 200 OK
Length: 17633433 (17M) [application/octet-stream]
Saving to: “GeoLite2-City.mmdb.gz”

100%[==>] 17,633,433 7.03M/s in 2.4s

2015-04-14 02:14:35 (7.03 MB/s) - “GeoLite2-City.mmdb.gz” saved [17633433/17633433]

Copying coverage zone file to public dir.

Installing SSL Certificates.

 We're now running a script to generate a self signed X509 SSL certificate.
 When prompted to enter a pass phrase, just enter 'pass' each time. The
 pass phrase will be stripped from the private key before installation.

 When prompted to enter a 'challenge password', just hit the ENTER key.

 The remaining enformation Country, State, Locality, etc... are required to
 generate a properly formatted SSL certificate.

Hit Enter when you are ready to continue:
Postinstall SSL Certificate Creation.

Generating an RSA Private Server Key.

Generating RSA private key, 1024 bit long modulus
..........................++++++
.....................++++++
e is 65537 (0x10001)
Enter pass phrase for server.key:
Verifying - Enter pass phrase for server.key:

The server key has been generated.

Creating a Certificate Signing Request (CSR)

Enter pass phrase for server.key:
You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [XX]:US
State or Province Name (full name) []:CO
Locality Name (eg, city) [Default City]:Denver
Organization Name (eg, company) [Default Company Ltd]:
Organizational Unit Name (eg, section) []:
Common Name (eg, your name or your server's hostname) []:
Email Address []:

Please enter the following 'extra' attributes
to be sent with your certificate request
A challenge password []:pass
An optional company name []:

The Certificate Signing Request has been generated.
Removing the pass phrase from the server key.
Enter pass phrase for server.key.orig:
writing RSA key

The pass phrase has been removed from the server key.

Generating a Self-signed certificate.
Signature ok
subject=/C=US/ST=CO/L=Denver/O=Default Company Ltd
Getting Private key

A server key and self signed certificate has been generated.

Installing the server key and server certificate.

The private key has been installed.

Installing the self signed certificate.

Saving the self signed csr.

 The self signed certificate has now been installed.

 You may obtain a certificate signed by a Certificate Authority using the
 server.csr file saved in the current directory. Once you have obtained
 a signed certificate, copy it to /etc/pki/tls/certs/localhost.crt and
 restart Traffic Ops.

SSL Certificates have been installed.

Starting Traffic Ops.

Starting Traffic Ops

Subroutine TrafficOps::has redefined at /opt/traffic_ops/app/local/lib/perl5/Mojo/Base.pm line 38.
Subroutine TrafficOps::has redefined at /opt/traffic_ops/app/local/lib/perl5/Mojo/Base.pm line 38.
Loading config from /opt/traffic_ops/app/conf/cdn.conf
Reading log4perl config from /opt/traffic_ops/app/conf/production/log4perl.conf
Starting hot deployment for Hypnotoad server 32192.

Waiting for Traffic Ops to start.

Shutdown Traffic Ops [y/n] [n]: n

To start Traffic Ops: service traffic_ops start
To stop Traffic Ops: service traffic_ops stop

traffic_ops #

Traffic Ops is now installed!

	Download the web dependencies (this will be added to the installer in the future):

traffic_ops # pwd
/opt/traffic_ops/install/bin
traffic_ops # ./download_web_deps
Finished curling https://cdn.datatables.net/1.10.4/js/jquery.dataTables.min.js | size is: 78746
Finished curling https://github.com/fancyapps/fancyBox/zipball/v2.1.5 | size is: 541026
Finished curling http://www.flotcharts.org/downloads/flot-0.8.3.zip | size is: 649913
Finished curling https://github.com/krzysu/flot.tooltip/releases/download/0.8.4/jquery.flot.tooltip-0.8.4.zip | size is: 7669
Finished curling https://gflot.googlecode.com/svn-history/r154/trunk/flot/jquery.flot.axislabels.js | size is: 17321
Finished curling https://github.com/alpixel/jMenu/archive/master.zip | size is: 41836
Finished curling https://code.jquery.com/jquery-1.11.2.min.js | size is: 95931
Finished curling https://code.jquery.com/ui/1.11.4/jquery-ui.min.js | size is: 240427
Finished curling https://code.jquery.com/ui/1.7.3/themes/dark-hive/jquery-ui.css | size is: 27499
Finished curling http://jquery-ui.googlecode.com/svn/tags/1.7.3/themes/dark-hive/images/ui-bg_flat_30_cccccc_40x100.png | size is: 180
Finished curling http://jquery-ui.googlecode.com/svn/tags/1.7.3/themes/dark-hive/images/ui-bg_flat_50_5c5c5c_40x100.png | size is: 180
Finished curling http://jquery-ui.googlecode.com/svn/tags/1.7.3/themes/dark-hive/images/ui-bg_glass_40_ffc73d_1x400.png | size is: 131
Finished curling http://jquery-ui.googlecode.com/svn/tags/1.7.3/themes/dark-hive/images/ui-bg_highlight-hard_20_0972a5_1x100.png | size is: 114
Finished curling http://jquery-ui.googlecode.com/svn/tags/1.7.3/themes/dark-hive/images/ui-bg_highlight-soft_33_003147_1x100.png | size is: 127
Finished curling http://jquery-ui.googlecode.com/svn/tags/1.7.3/themes/dark-hive/images/ui-bg_highlight-soft_35_222222_1x100.png | size is: 113
Finished curling http://jquery-ui.googlecode.com/svn/tags/1.7.3/themes/dark-hive/images/ui-bg_highlight-soft_44_444444_1x100.png | size is: 117
Finished curling http://jquery-ui.googlecode.com/svn/tags/1.7.3/themes/dark-hive/images/ui-bg_highlight-soft_80_eeeeee_1x100.png | size is: 95
Finished curling http://jquery-ui.googlecode.com/svn/tags/1.7.3/themes/dark-hive/images/ui-bg_loop_25_000000_21x21.png | size is: 235
Finished curling http://jquery-ui.googlecode.com/svn/tags/1.7.3/themes/dark-hive/images/ui-icons_222222_256x240.png | size is: 4369
Finished curling http://jquery-ui.googlecode.com/svn/tags/1.7.3/themes/dark-hive/images/ui-icons_4b8e0b_256x240.png | size is: 4369
Finished curling http://jquery-ui.googlecode.com/svn/tags/1.7.3/themes/dark-hive/images/ui-icons_a83300_256x240.png | size is: 4369
Finished curling http://jquery-ui.googlecode.com/svn/tags/1.7.3/themes/dark-hive/images/ui-icons_cccccc_256x240.png | size is: 4369
Finished curling http://jquery-ui.googlecode.com/svn/tags/1.7.3/themes/dark-hive/images/ui-icons_ffffff_256x240.png | size is: 4369
Finished curling https://maxcdn.bootstrapcdn.com/bootstrap/3.3.4/js/bootstrap.min.js | size is: 35951
Output file: ../../app/public/js/jquery.dataTables.min.js does not exist, putting into place.
Making dir: ../../app/public/js/fancybox/
Output file: ../../app/public/js/fancybox//jquery.fancybox-buttons.js does not exist. Putting file from zip into place.
Output file: ../../app/public/js/fancybox//fancybox_loading@2x.gif does not exist. Putting file from zip into place.
Output file: ../../app/public/js/fancybox//fancybox_loading.gif does not exist. Putting file from zip into place.
Output file: ../../app/public/js/fancybox//fancybox_buttons.png does not exist. Putting file from zip into place.
Output file: ../../app/public/js/fancybox//jquery.fancybox-thumbs.js does not exist. Putting file from zip into place.
Output file: ../../app/public/js/fancybox//jquery.fancybox-buttons.css does not exist. Putting file from zip into place.
Output file: ../../app/public/js/fancybox//jquery.fancybox-thumbs.css does not exist. Putting file from zip into place.
Output file: ../../app/public/js/fancybox//fancybox_sprite@2x.png does not exist. Putting file from zip into place.
Output file: ../../app/public/js/fancybox//jquery.fancybox.css does not exist. Putting file from zip into place.
Output file: ../../app/public/js/fancybox//jquery.fancybox-media.js does not exist. Putting file from zip into place.
Output file: ../../app/public/js/fancybox//fancybox_overlay.png does not exist. Putting file from zip into place.
Output file: ../../app/public/js/fancybox//fancybox_sprite.png does not exist. Putting file from zip into place.
Output file: ../../app/public/js/fancybox//jquery.fancybox.js does not exist. Putting file from zip into place.
Making dir: ../../app/public/js/flot/
Output file: ../../app/public/js/flot//jquery.flot.min.js does not exist. Putting file from zip into place.
Output file: ../../app/public/js/flot//jquery.flot.selection.js does not exist. Putting file from zip into place.
Output file: ../../app/public/js/flot//jquery.flot.stack.js does not exist. Putting file from zip into place.
Output file: ../../app/public/js/flot//jquery.flot.time.js does not exist. Putting file from zip into place.
Output file: ../../app/public/js/flot//jquery.flot.tooltip.js does not exist. Putting file from zip into place.
Output file: ../../app/public/js/flot/jquery.flot.axislabels.js does not exist, putting into place.
Output file: ../../app/public/js//jMenu.jquery.min.js does not exist. Putting file from zip into place.
Output file: ../../app/public/css//jmenu.css does not exist. Putting file from zip into place.
Output file: ../../app/public/js/jquery-1.11.2.min.js does not exist, putting into place.
Output file: ../../app/public/js/jquery-ui.min.js does not exist, putting into place.
Output file: ../../app/public/css/jquery-ui.css does not exist, putting into place.
Making dir: ../../app/public/css/images/
Output file: ../../app/public/css/images/ui-bg_flat_30_cccccc_40x100.png does not exist, putting into place.
Output file: ../../app/public/css/images/ui-bg_flat_50_5c5c5c_40x100.png does not exist, putting into place.
Output file: ../../app/public/css/images/ui-bg_glass_40_ffc73d_1x400.png does not exist, putting into place.
Output file: ../../app/public/css/images/ui-bg_highlight-hard_20_0972a5_1x100.png does not exist, putting into place.
Output file: ../../app/public/css/images/ui-bg_highlight-soft_33_003147_1x100.png does not exist, putting into place.
Output file: ../../app/public/css/images/ui-bg_highlight-soft_35_222222_1x100.png does not exist, putting into place.
Output file: ../../app/public/css/images/ui-bg_highlight-soft_44_444444_1x100.png does not exist, putting into place.
Output file: ../../app/public/css/images/ui-bg_highlight-soft_80_eeeeee_1x100.png does not exist, putting into place.
Output file: ../../app/public/css/images/ui-bg_loop_25_000000_21x21.png does not exist, putting into place.
Output file: ../../app/public/css/images/ui-icons_222222_256x240.png does not exist, putting into place.
Output file: ../../app/public/css/images/ui-icons_4b8e0b_256x240.png does not exist, putting into place.
Output file: ../../app/public/css/images/ui-icons_a83300_256x240.png does not exist, putting into place.
Output file: ../../app/public/css/images/ui-icons_cccccc_256x240.png does not exist, putting into place.
Output file: ../../app/public/css/images/ui-icons_ffffff_256x240.png does not exist, putting into place.
Output file: ../../app/public/js/bootstrap.min.js does not exist, putting into place.
traffic_ops #

Upgrading Traffic Ops

To upgrade:

	Enter the following command:service traffic_ops stop

	Enter the following command:yum upgrade traffic_ops

	See Installing Traffic Ops to run the post install.

	Enter the following command:service traffic_ops start

Configuring Traffic Ops

Follow the steps below to configure the newly installed Traffic Ops Instance.

Installing the SSL Cert

By default, Traffic Ops runs as an SSL web server, and a certificate needs to be installed. TBD.

Content Delivery Networks

Parameters an profiles

Many of the settings for the different servers in a Traffic Control CDN are controlled by parameters in the parameter view of Traffic Ops. Parameters are grouped in profiles and profiles are assigned to a server. For a typical cache there are hundreds of configuration settings to apply. The Traffic Ops parameter view contains the defined settings. To make life easier, Traffic Ops allows for duplication, comparison, import and export of Profiles. Traffic Ops also has a “Global profile” - the parameters in this profile are going to be applied to all servers in the Traffic Ops instance, or apply to Traffic Ops themselves. These parameters are:

	Name

	Config file

	Value

	tm.url

	global

	The URL where this Traffic Ops instance is being served from.

	tm.toolname

	global

	The name of the Traffic Ops tool. Usually “Traffic Ops”. Used in the About screen and in the comments headers of the files generated.

	tm.infourl

	global

	This is the “for more information go here” URL, which is visible in the About page.

	tm.logourl

	global

	This is the URL of the logo for Traffic Ops and can be relative if the logo is under traffic_ops/app/public.

	tm.instance_name

	global

	The name of the Traffic Ops instance. Can be used when multiple instances are active. Visible in the About page.

	tm.traffic_mon_fwd_proxy

	global

	When collecting stats from Traffic Monitor, Traffic Ops uses this forward proxy to pull the stats through.
This can be any of the MID tier caches, or a forward cache specifically deployed for this purpose. Setting
this variable can significantly lighten the load on the Traffic Monitor system and it is recommended to
set this parameter on a production system.

	geolocation.polling.url

	CRConfig.json

	The location to get the GeoLiteCity database from.

	geolocation6.polling.url

	CRConfig.json

	The location to get the IPv6 GeoLiteCity database from.

These parameters should be set to reflect the local environment.

After running the postinstall script, Traffic Ops has the following profiles pre-loaded:

	Name

	Description

	EDGE1

	The profile to be applied to the latest supported version of ATS, when running as an EDGE cache

	TR1

	The profile to be applied to the latest version of Traffic Router

	TM1

	The profile to be applied to the latest version of Traffic Monitor

	MID1

	The profile to be applied to the latest supported version of ATS, when running as an MID cache

	RIAK_ALL

	Riak profile for all CDNs to be applied to the Traffic Vault servers

..Note:: The Traffic Server profiles contain some information that is specific to the hardware being used (most notably the disk configuration), so some parameters will have to be changed to reflect your configuration. Future releases of Traffic Control will separate the hardware and software profiles so it is easier to “mix-and-match” different hardware configurations.

Below is a list of cache parameters that are likely to need changes from the default profiles shipped with Traffic Ops:

	Name

	Config file

	Description

	allow_ip

	astats.config

	This is a comma separated list of IPv4 CIDR blocks that will have access to the astats statistics on the caches.
The Traffic Monitor IP addresses have to be included in this, if they are using IPv4 to monitor the caches.

	allow_ip6

	astats.config

	This is a comma separated list of IPv6 CIDR blocks that will have access to the astats statistics on the caches.
The Traffic Monitor IP addresses have to be included in this, if they are using IPv6 to monitor the caches.

	Drive_Prefix

	storage.config

	JvD/Jeff to supply blurb

	Drive_Letters

	storage.config

	JvD/Jeff to supply blurb

	purge_allow_ip

	ip_allow.config

	The IP address that is allowed to “purge” content on the CDN through regex_revalidate

	health.threshold.loadavg

	rascal.properties

	The Unix load average at which Traffic Router will stop sending traffic to this cache

	health.threshold.\
availableBandwidthInKbps

	rascal.properties

	The amount of bandwidth that Traffic Router will try to keep available on the cache.
For example: “”>1500000” means stop sending new traffic to this cache when traffic is at 8.5Gbps on a 10Gbps interface.

Regions, Locations and Cache Groups

All servers have to have a location, which is their physical location. Each location is part of a region, and each region is part of a division. For Example, Denver could be a location in the Mile High region and that region could be part of the West division. Enter your divisions first in Misc->Divisions, then enter the regions in Misc->Regions, referencing the divisions entered, and finally, enter the physical locations in Misc->Locations, referencing the regions entered.

All servers also have to be part of a cache group. A cache group is a logical grouping of caches, that don’t have to be in the same physical location (in fact, usually a cache group is spread across minimally 2 physical locations for redundancy purposes), but share geo coordinates for content routing purposes. JvD to add more.

Creating the CentOS Kickstart File

The kickstart file is a text file, containing a list of items, each identified by a keyword. You can create it by using the Kickstart Configurator application, or writing it from scratch. The Red Hat Enterprise Linux installation program also creates a sample kickstart file based on the options that you selected during installation. It is written to the file /root/anaconda-ks.cfg. This file is editable using most text editors that can save files as ASCII text.

To generate ISO, the CentOS Kickstart is necessary:

	Create a kickstart file.

	Create a boot media with the kickstart file or make the kickstart file available on the network.

	Make the installation tree available.

	Start the kickstart installation.

Create a ks.src file in the root of the selection location. See the example below:

mkdir newdir
cd newdir/
cp -r ../centos65/* .
vim ks.src
vim isolinux/isolinux.cfg
cd vim osversions.cfg
vim osversions.cfg

This is a standard kickstart formatted file that the generate ISO process uses to create the kickstart (ks.cfg) file for the install. The generate ISO process uses the ks.src, overwriting any information set in the Generate ISO tab in Traffic Ops, creating ks.cfg.

Note

Streamline your install folder for under 1GB, which assists in creating a CD.

See also

For in-depth instructions, please see Kickstart Installation [https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Installation_Guide/s1-kickstart2-howuse.html]

Using Traffic Ops

The Traffic Ops Menu

[image: ../_images/12m.png]
The following tabs are available in the menu at the top of the Traffic Ops user interface.

	Health

Information on the health of the system. Hover over this tab to get to the following options:

	Option

	Description

	Table View

	A real time view into the main performance indicators of the CDNs managed by Traffic Control.
This view is sourced directly by the Traffic Monitor data and is updated every 10 seconds.
This is the default screen of Traffic Ops.
See The Health Table for details.

	Graph View

	A real graphical time view into the main performance indicators of the CDNs managed by Traffic Control.
This view is sourced by the Traffic Monitor data and is updated every 10 seconds.
On loading, this screen will show a history of 24 hours of data from Traffic Stats
See Graph View for details.

	Server Checks

	A table showing the results of the periodic check extension scripts that are run. See Server Checks

	Daily Summary

	A graph displaying the daily peaks of bandwidth, overall bytes served per day, and overall bytes served since initial installation
per CDN.

	Delivery Services

The main Delivery Service table. This is where you Create/Read/Update/Delete Delivery Services of all types. There are currently no sub menus for this tab.

	Servers

The main Servers table. This is where you Create/Read/Update/Delete servers of all types. Click the main tab to get to the main table, and hover over to get these sub options:

	Option

	Description

	Upload Server CSV

	Bulk add of servers from a csv file. See Bulk Upload Server

	Parameters

Parameters and Profiles can be edited here. Hover over the tab to get the following options:

	Option

	Description

	Global Profile

	The table of global parameters. See Parameters an profiles. This is where you Create/Read/Update/Delete parameters in the Global profile

	All Cache Groups

	The table of all parameters that are assgined to a cachegroup - this may be slow to pull up, as there can be thousands of parameters.

	All Profiles

	The table of all parameters that are assgined to a profile - this may be slow to pull up, as there can be thousands of parameters.

	Select Profile

	Select the parameter list by profile first, then get a table of just the parameters for that profile.

	Orphaned Parameters

	A table of parameters that are not associated to any profile of cache group. These parameters either should be deleted or associated with a profile of cache group.

	Tools

Tools for working with Traffic Ops and it’s servers. Hover over this tab to get the following options:

	Option

	Description

	Generate ISO

	Generate a bootable image for any of the servers in the Servers table (or any server for that matter). See Generate ISO

	Queue Updates

	Send Updates to the caches. See Queue Updates and Snapshot CRConfig

	DB Dump

	Backup the Database to a .sql file.

	Snapshot CRConfig

	Send updates to the Traffic Monitor / Traffic Router servers. See Queue Updates and Snapshot CRConfig

	Invalidate Content

	Invalidate or purge content from the CDN. See Invalidate Content

	Generate DNSSEC keys

	Neuman?

	Misc

Miscellaneous editing options. Hover over this tab to get the following options:

	Option

	Description

	Cache Groups

	Create/Read/Update/Delete cache groups

	Users

	Create/Read/Update/Delete users

	Profiles

	Create/Read/Update/Delete profiles. See Parameters and Profiles

	Networks(ASNs)

	Create/Read/Update/Delete Autonomous System Numbers See The Coverage Zone File and ASN Table

	Hardware

	Get detailed hardware information (note: this should be moved to a Traffic Ops Extension)

	Data Types

	Create/Read/Update/Delete data types

	Divisions

	Create/Read/Update/Delete divisions

	Regions

	Create/Read/Update/Delete regions

	Physical Locations

	Create/Read/Update/Delete locations

	ChangeLog

The Changelog table displays the changes that are being made to the Traffic Ops database through the Traffic Ops user interface. This tab will show the number of changes since you last visited this tab in (brackets) since the last time you visited this tab. There are currently no sub menus for this tab.

	Help

Help for Traffic Ops and Traffic Control. Hover over this tab to get the following options:

	Option

	Description

	About

	Traffic Ops information, such as version, database information, etc

	Release Notes

	Release notes for the most recent releases of Traffic Ops

	Logout

	Logout from Traffic Ops

Health

The Health Table

The Health table is the default landing screen for Traffic Ops, it displays the status of the EDGE caches in a table form directly from Traffic Monitor (bypassing Traffic Stats), sorted by Mbps Out. The columns in this table are:

	Profile: the Profile of this server or ALL, meaning this row shows data for multiple servers, and the row shows the sum of all values.

	Host Name: the host name of the server or ALL, meaning this row shows data for multiple servers, and the row shows the sum of all values.

	Edge Cache Group: the edge cache group short name or ALL, meaning this row shows data for multiple servers, and the row shows the sum of all values.

	Healthy: indicates if this cache is healthy according to the Health Protocol. A row with ALL in any of the columns will always show a [image: checkmark], this column is valid only for individual EDGE caches.

	Admin: shows the administrative status of the server.

	Connections: the number of connections this cache (or group of caches) has open (ats.proxy.process.http.current_client_connections from ATS).

	Mbps Out: the bandwidth being served out if this cache (or group of caches)

Since the top line has ALL, ALL, ALL, it shows the total connections and bandwidth for all caches managed by this instance of Traffic Ops.

Graph View

The Graph View shows a live view of the last 24 hours of bits per seconds served and open connections at the edge in a graph. This data is sourced from Traffic Stats. If there are 2 CDNs configured, this view will show the statistis for both, and the graphs are stacked. On the left-hand side, the totals and immediate values as well as the percentage of total possible capacity are displayed. This view is update every 10 seconds.

Server Checks

Server Checks are ..

Daily Summary

Server

This view shows a table of all the servers in Traffic Ops. The table columns show the most important details of the server. The IPAddrr column is clickable to launch an ssh:// link to this server. The [image: graph] icon will link to a Traffic Stats graph of this server for caches, and the [image: info] will link to the server status pages for other server types.

Server Types

These are the types of servers that can be managed in Traffic Ops:

	Name

	Description

	EDGE

	Edge Cache

	MID

	Mid Tier Cache

	ORG

	Origin

	CCR

	Comcast Content Router

	RASCAL

	Rascal health polling & reporting

	REDIS

	Redis stats gateway (will be obsolete soon)

	TOOLS_SERVER

	Ops hosts for managment

	RIAK

	Riak keystore

	SPLUNK

	SPLUNK indexer search head etc

	TRAFFIC_STATS

	traffic_stats server

	INFLUXDB

	influxDb server

Bulk Upload Server

Delivery Service

The fields in the Delivery Service view are:

	Name

	Description

	XML ID

	A unique string that identifies this delivery service.

	Content Routing Type

	The type of content routing this delivery service will use. See Delivery Service Types.

	Protocol

	The protocol to serve this delivery service to the clients with:

	0 http

	1 https

	2 both http and https

	DSCP Tag

	The DSCP value to mark IP packets to the client with.

	Signed URLs

	Use Signed URLs? See Token Based Authentication.

	Query String Handling

	How to treat query strings:

	0 use in cache key and hand up to origin -this means each unique query string Is treated as a unique URL.

	1 Do not use in cache key, but pass up to origin - this means a 2 URLs that are the same except for the query string will match, and cache HIT, while the origin still sees original query string in the request.

	2 Drop at edge - this means a 2 URLs that are the same except for the query string will match, and cache HIT, while the origin will not see original query string in the request.

	Geo Limit?

	Some services are intended to be limited by geography. The possible settings are are:

	None - Do not limit by geography.

	CZF only - If the requesting IP is not in the Coverage Zone File, do not serve the request.

	CZF + US - If the requesting IP is not in the Coverage Zone File or not in the United States, do not serve the request.

	Bypass FQDN

	(for HTTP routed delivery services only) This is the FQDN Traffic Router will redirect to (with the same path) when the max Bps or Max Tps for this deliveryservice are exceeded.

	Bypass Ipv4

	(For DNS routed delivery services only) This is the address to respond to A requests with when the the max Bps or Max Tps for this delivery service are exceeded.

	Bypass IPv6

	(For DNS routed delivery services only) This is the address to respond to AAAA requests with when the the max Bps or Max Tps for this delivery service are exceeded.

	IPv6 Routing Enabled?

	When set to yes, the Traffic Router will respond to AAAA DNS requests for the tr. and edge. names of this delivery service. Otherwise, only A records will be served.

	Range Request Handling

	(experimental) How to treat range requests:

	0 Do not cache (ranges requested from files taht are already cached due to a non range request will be a HIT)

	1 Use the background_fetch [https://docs.trafficserver.apache.org/en/latest/reference/plugins/background_fetch.en.html] plugin.

	2 Use the cache_range_requests plugin.

	Delivery Service DNS TTL

	The Time To Live on the DNS record for the Traffic Router A and AAAA records (tr.<deliveryservice>.<cdn-domain>) for a HTTP delivery service or for the A and
AAAAA records of the edge name (edge.<deliveryservice>.<cdn-domain>).

	Origin Server Base URL

	The Origin Server’s base URL. This includes the protocol (http or https). Example: http://movies.origin.com

	Use Multi Site Origin Feature

	Enable the Multi Site Origin feature for this delivery service. See Multi Site Origin

	CCR profile

	The Traffic Router profile for this delivery service. See CCR Profile or Traffic Router Profile.

	Maximum Bits per Second allowed globally

	The maximum bits per second this delivery service can serve across all EDGE caches before traffic will be diverted to the bypass destination. For a DNS delivery service, the Bypass Ipv4 or Ipv6 will be used
(depending on whether this was a A or AAAA request), and for HTTP delivery services the Bypass FQDN will be used.

	Maximum Transactions per Second allowed globally

	The maximum transactions per se this delivery service can serve across all EDGE caches before traffic will be diverted to the bypass destination. For a DNS delivery service, the Bypass Ipv4 or Ipv6 will be used
(depending on whether this was a A or AAAA request), and for HTTP delivery services the Bypass FQDN will be used.

	Geo Miss Default Latitude

	Default Latitude for this delivery service. When client localization fails for bot Coverage Zone and Geo Lookup, this the client will be routed as if it was at this lat.

	Geo Miss Default Longitude

	Default Longitude for this delivery service. When client localization fails for bot Coverage Zone and Geo Lookup, this the client will be routed as if it was at this long.

	Edge Header Rewrite Rules

	Header Rewrite rules to apply for this delivery service at the EDGE tier. See Header Rewrite Options and DSCP. 1

	Mid Header Rewrite Rules

	Header Rewrite rules to apply for this delivery service at the MID tier. See Header Rewrite Options and DSCP. 1

	Regex Remap Expression

	Regex Remap rule to apply to this delivery service at the Edge tier. See ATS documentation on regex_remap [https://docs.trafficserver.apache.org/en/latest/reference/plugins/regex_remap.en.html]. 1

	Cache URL expression

	Cache URL rule to apply to this delivery service. See ATS documentation on cacheurl [https://docs.trafficserver.apache.org/en/latest/reference/plugins/cacheurl.en.html]. 1

	Raw remap text

	For HTTP and DNS deliveryservices, this will get added to the end of the remap line on the cache verbatim. For ANY_MAP deliveryservices this is the remap line. 1

	Long Description

	Long description for this delivery service. To be consumed from the APIs by downstream tools (Portal).

	Customer

	Customer description for this delivery service. To be consumed from the APIs by downstream tools (Portal).

	Service

	Service description for this delivery service. To be consumed from the APIs by downstream tools (Portal).

	Info URL

	Info URL for this delivery service. To be consumed from the APIs by downstream tools (Portal).

	Check Path

	A path (ex: /crossdomain.xml) to verify the connection to the origin server with. This can be used by Check Extension scripts to do periodic health checks against the delivery service.

	Origin Shield (Pipe Delimited String)

	Experimental. Origin Shield string. See rl-org-shield

	Active

	When this is set to no Traffic Router will not serve DNS or HTTP responses for this delivery service.

	Last Updated

	(Read Only) The last time this delivery service was updated.

	Number of edges assigned

	(Read Only - change by clicking the Server Assignments button at the bottom) The number of EDGE caches assigned to this delivery service. See Server Assignments.

	Number of static DNS entries

	(Read Only - change by clicking the Static DNS button at the bottom) The number of static DNS entries for this delivery service. See Static DNS Entries.

	Example delivery URL

	(Read Only) An example of how the delivery URL may start. This could be multiple rows if multiple HOST_REGEXP entries have been entered.

	Regular expressions for this delivery service

	A subtable of the regular expressions to use when routing traffic for this delivery service. See Delivery Service Regexp.

	1(1,2,3,4,5)

	These fields are not validated by Traffic Ops to be correct syntactically, and can cause Traffic Server to not start if invalid. Please use with caution.

Delivery Service Types

One of the most important settings when creating the delivery service is the selection of the delivery service type. This type determines the routing method and the primary storage for the delivery service.

	Name

	Description

	HTTP

	HTTP Content Routing - The Traffic Router DNS auth server returns its own IP address on DNS queries, and the client gets redirected to a specific cache
in the nearest cache group using HTTP 302. Use this for long sessions like HLS/HDS/Smooth live streaming, where a longer setup time is not a.
problem.

	DNS

	DNS Content Routing - The Traffic Router DNS auth server returns an edge cache IP address to the client right away. The client will find the cache quickly
but the Traffic Router can not route to a cache that already has this content in the cache group. Use this for smaller objects like web page images / objects.

	HTTP_NO_CACHE

	HTTP Content Routing, but the caches will not actually cache the content, they act as just proxies. The MID tier is bypassed.

	HTTP_LIVE

	HTTP Content routing, but where for “standard” HTTP content routing the objects are stored on disk, for this delivery service type the objects are stored
on the RAM disks. Use this for linear TV. The MID tier is bypassed for this type.

	HTTP_LIVE_NATNL

	HTTP Content routing, same as HTTP_LIVE, but the MID tier is NOT bypassed.

	DNS_LIVE_NATNL

	DNS Content routing, ut where for “standard” DNS content routing the objects are stored on disk, for this delivery service type the objects are stored
on the RAM disks. Use this for linear TV. The MID tier is NOT bypassed for this type.

	DNS_LIVE

	DNS Content routing, same as DNS_LIVE_NATIONAL, but the MID tier is bypassed.

	ANY_MAP

	ANY_MAP is not known to Traffic Router. For this deliveryservice, the “Raw remap text” field in the input form will be used as the remap line on the cache.

Note

Once created, the Traffic Ops user interface does not allow you to change the delivery service type; the drop down is greyed out. There are many things that can go wrong when changing the type, and it is safer to delete the delivery service, and recreate it.

Header Rewrite Options and DSCP

Most header manipulation and per-delivery service configuration overrides are done using the ATS Header Rewrite Plugin [https://docs.trafficserver.apache.org/en/latest/reference/plugins/header_rewrite.en.html]. Traffic Control allows you to enter header rewrite rules to be applied at the edge and at the mid level. The syntax used in Traffic Ops is the same as the one described in the ATS documentation, except for some special strings that will get replaced:

	Traffic Ops Entry

	Gets Replaced with

	__RETURN__

	A newline

	__CACHE_IPV4__

	The cache’s IPv4 address

The deliveryservice screen also allows you to set the DSCP value of traffic sent to the client. This setting also results in a header_rewrite rule to be generated and applied to at the edge.

Note

The DSCP setting in the UI is only for setting traffic towards the client, and gets applied after the initial TCP handshake is complete, and the HTTP request is received (before that the cache can’t determine what deliveryservice this request is for, and what DSCP to apply), so the DSCP feature can not be used for security settings - the TCP SYN-ACK is not going to be DSCP marked.

Token Based Authentication

Token based authentication or signed URLs is implemented using the Traffic Server url_sig plugin. To sign a URL at the signing portal take the full URL, without any query string, and add on a query string with the following parameters:

	Client IP address

	The client IP address that this signature is valid for.

C=<client IP address>

	Expiration

	The Expiration time (seconds since epoch) of this signature.

E=<expiration time in secs since unix epoch>

	Algorithm

	The Algorithm used to create the signature. Only 1 (HMAC_SHA1)
and 2 (HMAC_MD5) are supported at this time

A=<algorithm number>

	Key index

	Index of the key used. This is the index of the key in the
configuration file on the cache. The set of keys is a shared
secret between the signing portal and the edge caches. There
is one set of keys per reverse proxy domain (fqdn).

K=<key index used>

	Parts

	Parts to use for the signature, always excluding the scheme
(http://). parts0 = fqdn, parts1..x is the directory parts
of the path, if there are more parts to the path than letters
in the parts param, the last one is repeated for those.
Examples:

1: use fqdn and all of URl path
0110: use part1 and part 2 of path only
01: use everything except the fqdn

P=<parts string (0's and 1's>

	Signature

	The signature over the parts + the query string up to and
including “S=”.

S=<signature>

See also

The url_sig README [https://github.com/apache/trafficserver/blob/master/plugins/experimental/url_sig/README].

Generate URL Sig Keys

To generate a set of random signed url keys for this delivery service and store them in Traffic Vault, click the Generate URL Sig Keys button at the bottom of the delivery service details screen.

Multi Site Origin

Note

The Multi Site Origin feature is based upon a feature n ATS that has yet to be submitted to Traffic Server upstream, until it is, set this to 0.

Normally, the mid servers are not aware of any redundancy at the origin layer. With Multi Site Origin enabled this changes - Traffic Server (and Traffic Ops) are now made aware of the fact there are multiple origins, and can be configured to do more advanced failover and loadbalancing actions.

With This feature enabled, origin servers (or origin server VIP names for a site) are going to be entered as servers in to the Traiffic Ops UI. Server type is With This feature enabled, origin servers (or origin server VIP names for a site) are going to be entered as servers in to the Traiffic Ops UI. Server type is “”

Parameters in the Origin profile that influence this feature:

	Name

	Default

	Description

	CONFIG proxy.config.http.parent_proxy_routing_enable

	INT 1

	enable parent selection. This is a required setting.

	CONFIG proxy.config.url_remap.remap_required

	INT 1

	required for parent selection.

	CONFIG proxy.config.http.parent_proxy.per_parent_connect_attempts

	INT 5

	maximum of 5 connection attempts per parent (parent.config list) within a transaction.

	CONFIG proxy.config.http.parent_proxy.total_connect_attempts

	INT 10

	maximum of 10 total connection attempts within a transaction.

	CONFIG proxy.config.http.parent_origin.simple_retry_enabled

	INT 1

	enables simple retry.

	CONFIG proxy.config.http.parent_origin.simple_retry_response_codes

	STRING 404

	the response code that invokes simple retry. May be a comman separated list of response codes.

	CONFIG proxy.config.http.parent_origin.dead_server_retry_response_codes

	STRING 503

	the response code that invokes dead server retry. May be a comma separated list of response codes

	CONFIG proxy.config.http.parent_origin.dead_server_retry_enabled

	INT 1

	enables dead server retry.

	CONFIG proxy.config.diags.debug.enabled

	INT 1

	enable debugging for testing only

CCR Profile or Traffic Router Profile

	Name

	Config_file

	Description

	location

	dns.zone

	Location to store the DNS zone files in the local file system of Traffic Router.

	location

	http-log4j.properties

	Location to find the log4j.properties file for Traffic Router.

	location

	dns-log4j.properties

	Location to find the dns-log4j.properties file for Traffic Router.

	location

	geolocation.properties

	Location to find the log4j.properties file for Traffic Router.

	CDN_name

	rascal-config.txt

	The human readable name of the CDN for this profile.

	CoverageZoneJsonURL

	CRConfig.xml

	The location (URL) to retrieve the coverage zone map file in JSON format from.

	geolocation.polling.url

	CRConfig.json

	The location (URL) to retrieve the geo database file from.

	geolocation.polling.interval

	CRConfig.json

	How often to refresh the coverage geo location database in ms

	coveragezone.polling.interval

	CRConfig.json

	How often to refresh the coverage zone map in ms

	coveragezone.polling.url

	CRConfig.json

	The location (URL) to retrieve the coverage zone map file in XML format from.

	domain_name

	CRConfig.json

	The top level domain of this Traffic Router instance.

	tld.ttls.AAAA

	CRConfig.json

	The Time To Live (TTL) the Traffic Router DNS Server will respond with on AAAA records.

	tld.ttls.A

	CRConfig.json

	The TTL the Traffic Router DNS Server will respond with on A records.

	tld.soa.expire

	CRConfig.json

	The value for the expire field the Traffic Router DNS Server will respond with on Start of Authority (SOA) records.

	tld.soa.minimum

	CRConfig.json

	The value for the minimum field the Traffic Router DNS Server will respond with on SOA records.

	tld.soa.admin

	CRConfig.json

	The DNS Start of Authority admin.

	tld.soa.retry

	CRConfig.json

	The value for the retry field the Traffic Router DNS Server will respond with on SOA records.

	tld.soa.refresh

	CRConfig.json

	The TTL the Traffic Router DNS Server will respond with on A records.

	tld.ttls.NS

	CRConfig.json

	The TTL the Traffic Router DNS Server will respond with on NS records.

	tld.ttls.SOA

	CRConfig.json

	The TTL the Traffic Router DNS Server will respond with on SOA records.

	api.port

	server.xml

	The TCP port Traffic Router listens on for API (REST) access.

	api.cache-control.max-age

	CRConfig.json

	The value of the Cache-Control: max-age= header in the API responses of Traffic Router.

Delivery Service Regexp

This table defines how requests are matched to the delivery service. There are 3 type of entries possible here:

	Name

	Description

	DS Type

	Status

	HOST_REGEXP

	This is the regular expresion to match the host part of the URL.

	DNS and HTTP

	Supported

	PATH_REGEXP

	This is the regular expresion to match the path part of the URL.

	HTTP

	Beta

	HEADER_REGEXP

	This is the regular expresion to match on any header in the request.

	HTTP

	Beta

The Order entry defines the order in which the regular expressions get evaluated. To support CNAMES from domains outside of the Traffic Control top level DNS domain, enter multiple HOST_REGEXP lines.

	Example:

	Example foo.

Note

In most cases is is sufficient to have just one entry in this table that has a HOST_REGEXP Type, and Order 0. For the movies delivery service in the Kabletown CDN, the entry is simply single HOST_REGEXP set to .*\.movies\..*. This will match every url that has a hostname that ends with movies.cdn1.kabletown.net, since cdn1.kabletown.net is the Kabletown CDN’s DNS domain.

Static DNS Entries

Static DNS entries allow you to create other names under the delivery service domain. You can enter any valid hostname, and create a CNAME, A or AAAA record for it by clicking the Static DNS button at the bottom of the delivery service details screen.

Server Assignments

Click the Server Assignments button at the bottom of the screen to assign servers to this delivery service. Servers can be selected by drilling down in a tree, starting at the profile, then the cache group, and then the individual servers. Traffic Router will only route traffic for this delivery service to servers that are assigned to it.

The Coverage Zone File and ASN Table

The Coverage Zone File (CZF) should contain a cachegroup name to network prefix mapping in the form:

{
 "coverageZones": {
 "cache-group-01": {
 "network6": [
 "1234:5678::\/64",
 "1234:5679::\/64"
],
 "network": [
 "192.168.8.0\/24",
 "192.168.9.0\/24"
]
 }
 "cache-group-02": {
 "network6": [
 "1234:567a::\/64",
 "1234:567b::\/64"
],
 "network": [
 "192.168.4.0\/24",
 "192.168.5.0\/24"
]
 }
 }
}

The CZF is an input to the Traffic Control CDN, and as such does not get generated by Traffic Ops, but rather, it gets consumed by Traffic Router. Some popular IP management systems output a very similar file to the CZF but in stead of a cachegroup an ASN will be listed. Traffic Ops has the “Networks (ASNs)” view to aid with the conversion of files like that to a Traffic Control CZF file; this table is not used anywhere in Traffic Ops, but can be used to script the conversion using the API.

The script that generates the CZF file is not part of Traffic Control, since it is different for each situation.

Parameters and Profiles

Parameters are shared between profiles if the set of { name, config_file, value } is the same. To change a value in one profile but not in others, the parameter has to be removed from the profile you want to change it in, and a new parameter entry has to be created (Add Parameter button at the bottom of the Parameters view), and assigned to that profile. It is easy to create new profiles from the Misc > Profiles view - just use the Add/Copy Profile button at the bottom of the profile view to copy an existing profile to a new one. Profiles can be exported from one system and imported to another using the profile view as well. It makes no sense for a parameter to not be assigned to a single profile - in that case it really has no function. To find parameters like that use the Parameters > Orphaned Parameters view. It is easy to create orphaned parameters by removing all profiles, or not assigning a profile directly after creating the parameter.

See also

Parameters an profiles in the Configuring Traffic Ops section.

Tools

Generate ISO

Queue Updates and Snapshot CRConfig

When changing delivery services special care has to be taken so that Traffic Router will not send traffic to caches for delivery services that the cache doesn’t know about yet. In general, when adding delivery services, or adding servers to a delivery service, it is best to update the caches before updating Traffic Router and Traffic Monitor. When deleting delivery services, or deleting server assignments to delivery services, it is best to update Traffic Router and Traffic Monitor first and then the caches. Updating the cache configuration is done through the Queue Updates menu, and updating Traffic Monitor and Traffic Router config is done through the Snapshot CRConfig menu.

Queue Updates

Every 15 minutes the caches will run a syncds to get all changes needed from Traffic Ops. The files that will be updated by the syncds job are:

	records.config

	remap.config

	parent.config

	cache.config

	hosting.config

	url_sig_(.*).config

	hdr_rw_(.*).config

	regex_revalidate.config

	ip_allow.config

A cache will only get updated when the update flag is set for it. To set the update flag, use the Queue Updates menu - here you can schedule updates for a whole CDN or a cache group:

	Click Tools > Queue Updates.

	Select the CDN to queueu uodates for, or All.

	Select the cache group to queue updates for, or All

	Click the Queue Updates button.

	When the Queue Updates for this Server? (all) window opens, click OK.

To schedule updates for just one cache, use the “Server Checks” page, and click the [image: checkmark] in the UPD column. The UPD column of Server Checks page will change show a [image: clock] when updates are pending for that cache.

Snapshot CRConfig

Every 60 seconds Traffic Monitor will check with Traffic Ops to see if a new CRConfig snapshot was made. If there is a new CRCOnfig, it will apply it to both Traffic Monitor and Traffic Router. See rl-crconfig for more information on the CRConfig file. To create a new snapshot, use the Tools > Snapshot CRConfig menu:

	Click Tools > Snapshot CRConfig.

	Verify the selection of the correct CDN from the Choose CDN drop down and click Diff CRConfig.
On initial selection of this, the CRConfig Diff window says the following:

There is no existing CRConfig for [cdn] to diff against… Is this the first snapshot???
If you are not sure why you are getting this message, please do not proceed!
To proceed writing the snapshot anyway click the ‘Write CRConfig’ button below.

If there is an older version of the CRConfig, a window will pop up showing the differences
between the active CRConfig and the CRConfig about to be written.

	Click Write CRConfig.

	When the This will push out a new CRConfig.json. Are you sure? window opens, click OK.

	The Successfully wrote CRConfig.json! window opens, click OK.

Invalidate Content

Invalidating content on the CDN is sometimes necessary when the origin was mis configured and something is cached in the CDN caches that needs to be removed. Given the size of a typical Traffic Control CDN and the amount of content that can be cached in it, removing the content from all the caches may take a long time. To speed up content invalidation, Traffic Ops will not try to remove the content from the caches, but it makes the content in accessible using the regex_revalidate ATS plugin. This forces a revalidation of the content, rather than a new get.

Note

This method forces a HTTP revalidation of the content, and not a new GET - the origin needs to support revalidation according to the HTTP/1.1 specification, and send a 200 OK or 304 Not Modified as applicable.

To invalidate content:

	Click Tools > Invalidate Content

	Fill out the form fields:

	Select the Delivery Service

	Enter the Path Regex - this should be a PCRE [http://www.pcre.org/] compatible regular expression for the path to match for forcing the revalidation. Be careful to only match on the content you need to remove - revalidation is an expensive operation for many origins, and a simple /.* can cause an overload condition of the origin.

	Enter the Time To Live - this is how long the revalidation force will be active for. It usually makes sense to make this the same as the Cache-Control header from the origin sets the object time to live in cache (by max-age or Expires). Entering a longer TTL here will make the caches do unnecessary work.

	Enter the Start Time - this is the start time when the force revalidation will be made active. Is pre populated with the current time, leave as is to schedule ASAP.

	Click the Submit button.

Generate DNSSEC Keys

TBD

Managing Traffic Ops Extensions

Traffic Monitor Administration

Installing Traffic Monitor

The following are requirements to ensure an accurate set up:

	CentOS 6

	4 vCPUs

	8GB RAM

	Successful install of Traffic Ops

	Tomcat

	Administrative access to the Traffic Ops

	Physical address of the site

	perl-JSON

	perl-WWW-Curl

	Enter the Traffic Monitor server into Traffic Ops

	Make sure the FQDN of the Traffic Monitor is resolvable in DNS.

	Install Traffic Monitor and perl mods: sudo yum -y install traffic_monitor perl-JSON perl-WWW-Curl

	Take the config from Traffic Ops - run : sudo /opt/traffic_monitor/bin/traffic_monitor_config.pl

Sample output:

traffic_mon # /opt/traffic_monitor/bin/traffic_monitor_config.pl https://traffic-ops.cdn.kabletown.net admin:password prompt
DEBUG: traffic_ops selected: https://traffic-ops.cdn.kabletown.net
DEBUG: traffic_ops login: admin:kl0tevax
DEBUG: Config write mode: prompt
DEBUG: Found profile from traffic_ops: RASCAL_CDN
DEBUG: Found CDN name from traffic_ops: kabletown_cdn
DEBUG: Found location for rascal-config.txt from traffic_ops: /opt/traffic_monitor/conf
WARN: Param not in traffic_ops: allow.config.edit description: Allow the running configuration to be edited through the UI Using default value of: false
WARN: Param not in traffic_ops: default.accessControlAllowOrigin description: The value for the header: Access-Control-Allow-Origin for published jsons... should be narrowed down to TMs Using default value of: *
WARN: Param not in traffic_ops: default.connection.timeout description: Default connection time for all queries (cache, peers, TM) Using default value of: 2000
WARN: Param not in traffic_ops: hack.forceSystemExit description: Call System.exit on shutdown Using default value of: false
WARN: Param not in traffic_ops: hack.peerOptimistic description: The assumption of a caches availability when unknown by peers Using default value of: true
WARN: Param not in traffic_ops: hack.publishDsStates description: If true, the delivery service states will be included in the CrStates.json Using default value of: true
WARN: Param not in traffic_ops: health.ds.interval description: The polling frequency for calculating the deliveryService states Using default value of: 1000
WARN: Param not in traffic_ops: health.ds.leniency description: The amount of time before the deliveryService disregards the last update from a non-responsive cache Using default value of: 30000
WARN: Param not in traffic_ops: health.event-count description: The number of historical events that will be kept Using default value of: 200
WARN: Param not in traffic_ops: health.polling.interval description: The polling frequency for getting the states from caches Using default value of: 5000
WARN: Param not in traffic_ops: health.startupMinCycles description: The number of query cycles that must be completed before this Traffic Monitor will start reporting Using default value of: 2
WARN: Param not in traffic_ops: health.timepad description: A delay between each separate cache query Using default value of: 10
WARN: Param not in traffic_ops: peers.polling.interval description: Polling frequency for getting states from peer monitors Using default value of: 5000
WARN: Param not in traffic_ops: peers.polling.url description: The url for current, unfiltered states from peer monitors Using default value of: http://${hostname}/publish/CrStates?raw
WARN: Param not in traffic_ops: peers.threadPool description: The number of threads given to the pool for querying peers Using default value of: 1
WARN: Param not in traffic_ops: tm.auth.url description: The url for the authentication form Using default value of: https://${tmHostname}/login
WARN: Param not in traffic_ops: tm.crConfig.json.polling.url description: Url for the cr-config (json) Using default value of: https://${tmHostname}/CRConfig-Snapshots/${cdnName}/CRConfig.json
WARN: Param not in traffic_ops: tm.healthParams.polling.url description: The url for the heath params (json) Using default value of: https://${tmHostname}/health/${cdnName}
WARN: Param not in traffic_ops: tm.polling.interval description: The polling frequency for getting updates from TM Using default value of: 10000
DEBUG: allow.config.edit needed in config, but does not exist in config on disk.
DEBUG: cdnName value on disk () does not match value needed in config (kabletown_cdn).
DEBUG: default.accessControlAllowOrigin needed in config, but does not exist in config on disk.
DEBUG: default.connection.timeout needed in config, but does not exist in config on disk.
DEBUG: hack.forceSystemExit needed in config, but does not exist in config on disk.
DEBUG: hack.peerOptimistic needed in config, but does not exist in config on disk.
DEBUG: hack.publishDsStates needed in config, but does not exist in config on disk.
DEBUG: health.ds.interval needed in config, but does not exist in config on disk.
DEBUG: health.ds.leniency needed in config, but does not exist in config on disk.
DEBUG: health.startupMinCycles needed in config, but does not exist in config on disk.
DEBUG: health.timepad value on disk (20) does not match value needed in config (10).
DEBUG: peers.polling.interval needed in config, but does not exist in config on disk.
DEBUG: peers.threadPool needed in config, but does not exist in config on disk.
DEBUG: tm.auth.password value on disk () does not match value needed in config (kl0tevax).
DEBUG: tm.auth.username value on disk () does not match value needed in config (admin).
DEBUG: tm.hostname value on disk () does not match value needed in config (traffic-ops.cdn.kabletown.net).
DEBUG: Proposed traffic_monitor_config:
{
 "traffic_monitor_config":{
 "default.accessControlAllowOrigin":"*",
 "health.startupMinCycles":"2",
 "tm.auth.password":"kl0tevax",
 "tm.auth.url":"https://${tmHostname}/login",
 "tm.healthParams.polling.url":"https://${tmHostname}/health/${cdnName}",
 "allow.config.edit":"false",
 "tm.crConfig.json.polling.url":"https://${tmHostname}/CRConfig-Snapshots/${cdnName}/CRConfig.json",
 "tm.auth.username":"admin",
 "peers.polling.url":"http://${hostname}/publish/CrStates?raw",
 "health.timepad":"10",
 "hack.publishDsStates":"true",
 "default.connection.timeout":"2000",
 "health.ds.interval":"1000",
 "peers.polling.interval":"5000",
 "hack.forceSystemExit":"false",
 "health.ds.leniency":"30000",
 "cdnName":"kabletown_cdn",
 "peers.threadPool":"1",
 "tm.polling.interval":"10000",
 "health.polling.interval":"5000",
 "health.event-count":"200",
 "hack.peerOptimistic":"true",
 "tm.hostname":"traffic-ops.cdn.kabletown.net"
 }
}
--
----OK to write this config to disk? (Y/n) [n]y
--
--
----OK to write this config to disk? (Y/n) [n]Y
--
DEBUG: Writing /opt/traffic_monitor/conf/traffic_monitor_config.js
traffic_mon #

	Start Tomcat: sudo service tomcat start

Using CATALINA_BASE: /opt/tomcat
Using CATALINA_HOME: /opt/tomcat
Using CATALINA_TMPDIR: /opt/tomcat/temp
Using JRE_HOME: /usr
Using CLASSPATH:/opt/tomcat/bin/bootstrap.jar
Using CATALINA_PID:/var/run/tomcat/tomcat.pid
Starting tomcat [OK]

	Verify Traffic Monitor is running by pointing your browser to port 80 on the Traffic Monitor host.

Configuring Traffic Monitor

Configuration Overview

Traffic Monitor is configured using its JSON configuration file, traffic_monitor_config.js. Specify the URL, username, password, and CDN name for the instance of Traffic Ops for which this Traffic Monitor is a member, and start the software. Once started with the correct configuration, Traffic Monitor downloads its configuration from Traffic Ops and begins polling caches. Once a configurable number of polling cycles completes, health protocol state is available via RESTful JSON endpoints.

Troubleshooting and log files

Traffic Monitor log files are in /opt/traffic_monitor/var/log/, and tomcat log files are in /opt/tomcat/logs/.

Traffic Router Administration

Installing Traffic Router

The following are requirements to ensure an accurate set up:

	CentOS 6

	4 vCPUs

	8GB RAM

	Successful install of Traffic Ops

	Successful install of Traffic Monitor

	Administrative access to the Traffic Ops

	Physical address of the site

	perl-JSON

	perl-WWW-Curl

	Enter the Traffic Router server into Traffic Ops.

	Make sure the FQDN of the Traffic Monitor is resolvable in DNS.

	Install a traffic router: sudo yum install traffic_router.

	Edit /opt/traffic_router/conf/traffic_monitor.properties and put in the correct online Traffic Monitor(s) for your CDN.

Example:

list of ips or hostnames delimited by semicolon (;)
traffic_monitor.bootstrap.hosts=traffic-mon-01.cdn.kabletown.net:80;

Instead of using the traffic_monitor.bootstrap.hosts property as a bootstrap
source before switching to ONLINE Monitors in the TrConfig, always
use the hosts listed for TrConfig and TrStates. Defaults to false.
traffic_monitor.bootstrap.local = false

traffic_monitor.properties: url that should normally point to this file
traffic_monitor.properties=file:/opt/traffic_router/conf/traffic_monitor.properties

Frequency for reloading this file
traffic_monitor.properties.reload.period=60000

	Start Tomcat: sudo service tomcat start, and test lookups with dig and curl against that server.

	Snapshot CRConfig

	This instantly associates production traffic on the servers. They need to be online when you change the DNS records.

	Add the correct DNS entries to the SOA records for the CDN on which you are working.

	Add the servers to the NS and SOA records for your domain.

Configuring Traffic Router

	From Misc > Profiles, verify the following:

	The Traffic Router information.

	The profile is set correctly.

	The Status is set to OFFLINE.

	Verify the functionality of the DNS entry for the Traffic Router.

	Click Tools > Generate ISO.

	Complete the necessary fields.

	Click Download ISO.

Troubleshooting and log files

Traffic Router log files are in /opt/traffic_router/var/log/, and tomcat log files are in /opt/tomcat/logs/.

Traffic Stats Administration

Installing Traffic Stats

Configuring Traffic Stats

Traffic Server Administration

Installing Traffic Server

	Select Servers.

	Scroll to the bottom of the page and click Add Server.

	Complete the Required Info: section.

	Click Submit.

	Click Save.

Configuring Traffic Server

All of the Traffic Server application configuration files are generated by Traffic Ops and installed by way of the traffic_ops_ort.pl script.

	traffic_ops_ort.pl

	The traffic_ops_ort.pl should be installed on all caches (by puppet or other non Traffic Ops means), usually in /opt/ort. It is used to do initial install of the config files when the cache is being deployed, and to keep the config files up to date when the cache is already in service. The usage message of the script is shown below:

$ /opt/ort/traffic_ops_ort.pl
Mon Mar 9 18:38:01 UTC 2015
Version of this script: 0.46b
====-====
Usage: ./traffic_ops_ort.pl <Mode> <Log_Level> <Traffic_Ops_URL> <Traffic_Ops_Login>
 <Mode> = interactive - asks questions during config process.
 <Mode> = report - prints config differences and exits.
 <Mode> = badass - attempts to fix all config differences that it can.
 <Mode> = syncds - syncs delivery services with what is configured in Traffic Ops.

 <Log_Level> => ALL, TRACE, DEBUG, INFO, WARN, ERROR, FATAL, NONE

 <Traffic_Ops_URL> = URL to 12 monkeys host. Example: https://trafficops.company.net

 <Traffic_Ops_Login> => Example: 'username:password'
====-====
$

For initial configuration or when major changes (like a Profile change) need to be made, run the script in “badass mode”. All required rpm packages will be installed, all Traffic Server config files will be fetched and installed, and (if needed) the Traffic Server application will be restarted. Example run below:

run here

For “every day changes” such as adding deliveryservices or changing records.config parameters caches should run the script in “syncds” mode out of cron. Example crontab entry:

*/15 * * * * /opt/ort/traffic_ops_ort.pl syncds warn https://traffops.kabletown.net admin:password > /tmp/ort/syncds.log 2>&1

Note

<disclaimer on what is “hot changeable” here>

Traffic Vault Administration

Installing Traffic Vault

In order to successfully store private keys you will need to install Riak.
The latest version of Riak can be downloaded on the Riak website [http://docs.basho.com/riak/latest/downloads/].
The installation instructions for Riak can be found here [http://docs.basho.com/riak/latest/ops/building/installing/].

Production is currently running version 2.0.5 of Riak, but the latest version should suffice.

Configuring Traffic Vault

The following steps were taken to configure Riak in our environments.

Riak configuration file configuration

The following steps need to be performed on each Riak server in the cluster:

	Log into riak server as root

	cd to /etc/riak/

	
	Update the following in riak.conf to reflect your IP:

	
	nodename = riak@a-host.sys.kabletown.net

	listener.http.internal = a-host.sys.kabletown.net:8098 (can be 80 - This endpoint will not work with sec enabled)

	listener.protobuf.internal = a-host.sys.kabletown.net:8087 (can be different port if you want)

	listener.https.internal = a-host.sys.kabletown.net:8088 (can be 443)

	
	Updated the following conf file to point to your cert files

	
	ssl.certfile = /etc/riak/certs/server.crt

	ssl.keyfile = /etc/riak/certs/server.key

	ssl.cacertfile = /etc/pki/tls/certs/ca-bundle.crt

	
	Add a line at the bottom of the config for tlsv1

	
	tls_protocols.tlsv1 = on

	
	Once the config file has been updated restart riak

	
	/etc/init.d/riak restart

	
	Validate server is running by going to the following URL:

	
	https://<serverHostname>:8088/ping

Riak-admin configuration

Riak-admin is a command line utility that needs to be run as root on a server in the riak cluster.

	Assumptions:

	
	Riak 2.0.2 or greater is installed

	SSL Certificates have been generated (signed or self-signed)

	Root access to riak servers

	Add admin user and riakuser to riak

	
	Admin user will be a super user

	Riakuser will be the application user

Login to one of the riak servers in the cluster as root (any will do)

	Enable security

riak-admin security enable

	Add groups

riak-admin security add-group admins

riak-admin security add-group keysusers

	Add users

Note

username and password should be stored in /opt/traffic_ops/app/conf/<environment>/riak.conf

riak-admin security add-user admin password=<AdminPassword> groups=admins

riak-admin security add-user riakuser password=<RiakUserPassword> groups=keysusers

	Grant access for admin and riakuser

riak-admin security add-source riakuser 0.0.0.0/0 password

riak-admin security add-source admin 0.0.0.0/0 password

	Grant privs to admins for everything

riak-admin security grant riak_kv.list_buckets,riak_kv.list_keys,riak_kv.get,riak_kv.put,riak_kv.delete on any to admins

	Grant privs to keysuser for ssl, dnssec, and url_sig_keys buckets only

riak-admin security grant riak_kv.get,riak_kv.put,riak_kv.delete on default ssl to keysusers

riak-admin security grant riak_kv.get,riak_kv.put,riak_kv.delete on default dnssec to keysusers

riak-admin security grant riak_kv.get,riak_kv.put,riak_kv.delete on default url_sig_keys to keysusers

See also

For more information on security in Riak, see the Riak Security documentation [http://docs.basho.com/riak/2.0.4/ops/advanced/security/].

See also

For more information on authentication and authorization in Riak, see the Riak Authentication and Authorization documentation [http://docs.basho.com/riak/2.0.4/ops/running/authz/].

Traffic Ops Configuration

There are a couple conifgurations that are necessary in Traffic Ops.

	
	Database Updates

	
	A new profile for Riak needs to be added to the profile table

	A new type of Riak needs to be added to the type table

	The servers in the Riak cluster need to be added to the server table

Note

profile and type data should be pre-loaded by seeds sql script.

	
	Configuration updates

	
	/opt/traffic_ops/app/conf/<environment>/riak.conf needs to be updated to reflect the correct username and password for accessing riak.

Developer’s Guide

Use this guide to start developing applications that consume the Traffic Control APIs, to create extensions to Traffic Ops, or work on Traffic Control itself.

	Traffic Ops
	Introduction

	Software Requirements

	Traffic Ops Project Tree Overview

	Perl Formatting Conventions

	Database Management

	Installing The Developer Environment

	Test Cases

	Extensions

	API

	Traffic Router
	Introduction

	Software Requirements

	Traffic Router Project Tree Overview

	Java Formatting Conventions

	Installing The Developer Environment

	Test Cases

	API

	Traffic Monitor
	Introduction

	Software Requirements

	Traffic Monitor Project Tree Overview

	Java Formatting Conventions

	Installing The Developer Environment

	Test Cases

	API

	Traffic Stats
	Introduction

	Software Requirements

	Traffic Stats Project Tree Overview

	Go Formatting Conventions

	Installing The Developer Environment

	Test Cases

	Traffic Server

Traffic Ops

Introduction

Traffic Ops uses a MySql or Postgres database to store the configuration information, and the Mojolicious framework [http://mojolicio.us/] to generate the user interface and REST APIs.

Software Requirements

To work on Traffic Ops you need a *nix (MacOS and Linux are most commonly used) environment that has the following installed:

	Carton 1.0.12 [http://search.cpan.org/~miyagawa/Carton-v1.0.12/lib/Carton.pm]

	Go 1.4 [http://golang.org/doc/install]

	Perl 5.10.1

	Git

	MySQL 5.1.52

Traffic Ops Project Tree Overview

/opt/traffic_ops/app

	bin/ - Directory for scripts, cronjobs, etc.

	conf/

	/development - Development (local) specific config files.

	/misc - Miscellaneous config files.

	/production - Production specific config files.

	/test - Test (unit test) specific config files.

	db/ - Database related area.

	/migrations - Database Migration files.

	lib/

	/API - Mojo Controllers for the /API area of the application.

	/Common - Common Code between both the API and UI areas.

	/Extensions

	Fixtures/ - Test Case fixture data for the ‘to_test’ database.
* /Integration - Integration Tests.

	/MojoPlugins - Mojolicious Plugins for Common Controller Code.

	Schema/ - Database Schema area.
* /Result - DBIx ORM related files.

	/Test - Common Test.

	/UI - Mojo Controllers for the Traffic Ops UI itself.

	Utils/
* /Helper - Common utilities for the Traffic Ops application.

	log/ - Log directory where the development and test files are written by the app.

	public/

	css/ - Stylesheets.

	images/ - Images.

	js/ - Javascripts

	script/ - Mojo Bootstrap scripts.

	t/ - Unit Tests for the UI.

	api/ - Unit Tests for the API.

	t_integration/ - High level tests for Integration level testing.

	templates/ - Mojo Embedded Perl (.ep) files for the UI.

Perl Formatting Conventions

Perl tidy is for use in code formatting. See the following config file for formatting conventions.

edit a file called $HOME/.perltidyrc

l = 156
et=4
t
ci=4
st
se
vt=0
cti=0
pt=1
bt=1
sbt=1
bbt=1
nsfs
nolq
otr
aws
wls="= + - / * ."
wrs=\"= + - / * .\"
wbb =% + - * / x != == >= <= =~ < > | & **= += *= &= <<= &&= -= /= |= + >>= ||= .= %= ^= x=

Database Management

The admin.pl script is for use in managing the Traffic Ops database tables. Below is an example of its usage.

$ db/admin.pl

Usage: db/admin.pl [–env (development|test|production)] [arguments]

Example: db/admin.pl --env=test reset

Purpose: This script is used to manage the database. The environments are defined in the dbconf.yml, as well as the database names.

	Arguments

	Description

	create

	Execute db ‘create’ the database for the current environment.

	down

	Roll back a single migration from the current version.

	drop

	Execute db ‘drop’ on the database for the current environment.

	redo

	Roll back the most recently applied migration, then run it again.

	reset

	Execute db drop, create, load_schema, migrate on the database for
the current environment.

	seed

	Execute SQL from db/seeds.sql for loading static data.

	setup

	Execute db drop, create, load_schema, migrate, seed on the
database for the current environment.

	status

	Print the status of all migrations.

	upgrade

	Execute migrate then seed on the database for the current
environment.

Installing The Developer Environment

To install the Traffic Ops Developer environment:

	Clone the traffic_control repository from github.com [https://github.com/Comcast/traffic_control].

	Install the local dependencies using Carton (cpanfile).

$ cd traffic_ops/app
$ carton

	Set up a user in MySQL.

Example:

master $ mysql
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 305
Server version: 5.6.19 Homebrew

Copyright (c) 2000, 2014, Oracle and/or its affiliates. All rights reserved.

Oracle is a registered trademark of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective
owners.

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

mysql> create user ‘to_user’@’localhost’;
mysql> grant all on to_development.* to 'to_user'@'localhost' identified by 'twelve';
mysql> grant all on to_test.* to 'to_user'@'localhost' identified by 'twelve';
mysql> grant all on to_integration.* to 'to_user'@'localhost' identified by 'twelve';

	Enter db/admin.pl --env=<enviroment name> setup to set up the traffic_ops database(s).

	Unit test database: $ db/admin.pl --env=test setup

	Development database: $ db/admin.pl --env=development setup

	Integration database: $ db use db/admin.pl --env=integration setup

The database schema should look like this:

master $ db/admin.pl --env=development setup
Using database.conf: conf/development/database.conf
Using database.conf: conf/development/database.conf
Using database.conf: conf/development/database.conf
Using database.conf: conf/development/database.conf
Using database.conf: conf/development/database.conf
Using database.conf: conf/development/database.conf
Executing 'drop database to_development'
Executing 'create database to_development'
Creating database tables...
Warning: Using a password on the command line interface can be insecure.
Migrating database...
goose: migrating db environment 'development', current version: 0, target: 20150210100000
OK 20141222103718_extension.sql
OK 20150108100000_add_job_deliveryservice.sql
OK 20150205100000_cg_location.sql
OK 20150209100000_cran_to_asn.sql
OK 20150210100000_ds_keyinfo.sql
Seeding database...
Warning: Using a password on the command line interface can be insecure.

	(Optional) To load temporary data into the tables: $ perl bin/db/setup_kabletown.pl

	To start Traffic Ops, enter $ bin/start.sh

The local Traffic Ops instance uses an open source framework called morbo, starting following the start command execution.

Start up success includes the following:

[2015-02-24 10:44:34,991] [INFO] Listening at "http://*:3000".

Server available at http://127.0.0.1:3000.

	Using a browser, navigate to the given address: http://127.0.0.1:3000

	For the initial log in:

	User name: admin

	Password: password

	Change the log in information.

Test Cases

Use prove to execute test cases. Execute after a carton install:

	To run the Unit Tests: $ local/bin/prove -qrp t/

	To run the Integration Tests: $ local/bin/prove -qrp t_integration/

The KableTown CDN example

The integration tests will load an example CDN with most of the features of Traffic Control being used. This is mostly for testing purposes, but can also be used as an example of how to configure certain features. To load the KableTown CDN example and access it:

	Run the integration tests

	Start morbo against the integration database: export MOJO_MODE=integration; ./bin/start.sh

	Using a browser, navigate to the given address: http://127.0.0.1:3000

	For the initial log in:

	User name: admin

	Password: password

Extensions

Traffic Ops Extensions are a way to enhance the basic functionality of Traffic Ops in a custom manner. There are three types of extensions:

	Check Extensions

These allow you to add custom checks to the “Health->Server Checks” view.

	Configuration Extensions

These allow you to add custom configuration file generators.

	Data source Extensions

These allow you to add statistic sources for the graph views and APIs.

Extensions are managed using the $TO_HOME/bin/extensions command line script. For more information see Managing Traffic Ops Extensions.

Check Extensions

In other words, check extensions are scripts that, after registering with Traffic Ops, have a column reserved in the “Health->Server Checks” view and that usually run periodically out of cron.

It is the responsibility of the check extension script to iterate over the servers it wants to check and post the results. A check extension can have a column of [image: checkmark]‘s and [image: X]‘s (CHECK_EXTENSION_BOOL) or a column that shows a number (CHECK_EXTENSION_NUM). A simple example of a check extension of type CHECK_EXTENSION_NUM that will show 99.33 for all servers of type EDGE is shown below:

Script here.

Check Extension scripts are located in the $TO_HOME/bin/checks directory.

Currently, the following Check Extensions are available and installed by default:

	Cache Disk Usage Check - CDU

	This check shows how much of the available total cache disk is in use. A “warm” cache should show 100.00.

	Cache Hit Ratio Check - CHR

	The cache hit ratio for the cache in the last 15 minutes (the interval is determined by the cron entry).

	DiffServe CodePoint Check - DSCP

	Checks if the returning traffic from the cache has the correct DSCP value as assigned in the delivery service. (Some routers will overwrite DSCP)

	Maximum Transmission Check - MTU

	Checks if the Traffic Ops host (if that is the one running the check) can send and receive 8192 size packets to the ip_address of the server in the server table.

	Operational Readiness Check - ORT

	See Configuring Traffic Server for more information on the ort script. The ORT column shows how many changes the traffic_ops_ort.pl script would apply if it was run. The number in this column should be 0.

	Ping Check - 10G, ILO, 10G6, FQDN

	The bin/checks/ToPingCheck.pl is to check basic IP connectivity, and in the default setup it checks IP connectivity to the following:

	10G

	Is the ip_address (the main IPv4 address) from the server table pingable?

	ILO

	Is the ilo_ip_address (the lights-out-mangement IPv4 address) from the server table pingable?

	10G6

	Is the ip6_address (the main IPv6 address) from the server table pingable?

	FQDN

	Is the Fully Qualified Domain name (the concatenation of host_name and . and domain_name from the server table) pingable?

Traffic Router Check - RTR

Configuration Extensions

NOTE: Config Extensions are Beta at this time.

Data source Extensions

NOTE: Data source Extensions are Beta at this time.

API

The Traffic Ops API provides programmatic access to read and write CDN data providing authorized API consumers with the ability to monitor CDN performance and configure CDN settings and parameters.

Response Structure

All successful responses have the following structure:

{
 "response": <JSON object with main response>,
 "version": "1.1"
}

To make the documentation easier to read, only the <JSON object with main response> is documented, even though the response and version fields are always present.

Using API Endpoints

	Authenticate with your Traffic Portal or Traffic Ops user account credentials.

	Upon successful user authentication, note the mojolicious cookie value in the response headers.

	Pass the mojolicious cookie value, along with any subsequent calls to an authenticated API endpoint.

Example:

[jvd@laika ~]$ curl -H "Accept: application/json" http://localhost:3000/api/1.1/usage/asns.json
{"version":"1.1","alerts":[{"level":"error","text":"Unauthorized, please log in."}]}
[jvd@laika ~]$
[jvd@laika ~]$ curl -v -H "Accept: application/json" -v -X POST --data '{ "u":"admin", "p":"secret_passwd" }' http://localhost:3000/api/1.1/user/login
* Hostname was NOT found in DNS cache
* Trying ::1...
* connect to ::1 port 3000 failed: Connection refused
* Trying 127.0.0.1...
* Connected to localhost (127.0.0.1) port 3000 (#0)
> POST /api/1.1/user/login HTTP/1.1
> User-Agent: curl/7.37.1
> Host: localhost:3000
> Accept: application/json
> Content-Length: 32
> Content-Type: application/x-www-form-urlencoded
>
* upload completely sent off: 32 out of 32 bytes
< HTTP/1.1 200 OK
< Connection: keep-alive
< Access-Control-Allow-Methods: POST,GET,OPTIONS,PUT,DELETE
< Access-Control-Allow-Origin: http://localhost:8080
< Access-Control-Allow-Headers: Origin, X-Requested-With, Content-Type, Accept
< Set-Cookie: mojolicious=eyJleHBpcmVzIjoxNDI5NDAyMjAxLCJhdXRoX2RhdGEiOiJhZG1pbiJ9--f990d03b7180b1ece97c3bb5ca69803cd6a79862; expires=Sun, 19 Apr 2015 00:10:01 GMT; path=/; HttpOnly
< Content-Type: application/json
< Date: Sat, 18 Apr 2015 20:10:01 GMT
< Access-Control-Allow-Credentials: true
< Content-Length: 81
< Cache-Control: no-cache, no-store, max-age=0, must-revalidate
* Server Mojolicious (Perl) is not blacklisted
< Server: Mojolicious (Perl)
<
* Connection #0 to host localhost left intact
{"alerts":[{"level":"success","text":"Successfully logged in."}],"version":"1.1"}
[jvd@laika ~]$

[jvd@laika ~]$ curl -H'Cookie: mojolicious=eyJleHBpcmVzIjoxNDI5NDAyMjAxLCJhdXRoX2RhdGEiOiJhZG1pbiJ9--f990d03b7180b1ece97c3bb5ca69803cd6a79862;' -H "Accept: application/json" http://localhost:3000/api/1.1/asns.json
{"response":{"asns":[{"lastUpdated":"2012-09-17 15:41:22", .. asn data deleted .. ,"version":"1.1"}
[jvd@laika ~]$

API Errors

Response Properties

	Parameter

	Type

	Description

	alerts

	array

	A collection of alert messages.

	>level

	string

	Success, info, warning or error.

	>text

	string

	Alert message.

	version

	string

	

The 3 most common errors returned by Traffic Ops are:

	401 Unauthorized

	When you don’t supply the right cookie, this is the response.

[jvd@laika ~]$ curl -v -H "Accept: application/json" http://localhost:3000/api/1.1/usage/asns.json
* Hostname was NOT found in DNS cache
* Trying ::1...
* connect to ::1 port 3000 failed: Connection refused
* Trying 127.0.0.1...
* Connected to localhost (127.0.0.1) port 3000 (#0)
> GET /api/1.1/usage/asns.json HTTP/1.1
> User-Agent: curl/7.37.1
> Host: localhost:3000
> Accept: application/json
>
< HTTP/1.1 401 Unauthorized
< Cache-Control: no-cache, no-store, max-age=0, must-revalidate
< Content-Length: 84
* Server Mojolicious (Perl) is not blacklisted
< Server: Mojolicious (Perl)
< Connection: keep-alive
< Access-Control-Allow-Methods: POST,GET,OPTIONS,PUT,DELETE
< Access-Control-Allow-Headers: Origin, X-Requested-With, Content-Type, Accept
< Access-Control-Allow-Origin: http://localhost:8080
< Date: Sat, 18 Apr 2015 20:36:12 GMT
< Content-Type: application/json
< Access-Control-Allow-Credentials: true
<
* Connection #0 to host localhost left intact
{"version":"1.1","alerts":[{"level":"error","text":"Unauthorized, please log in."}]}
[jvd@laika ~]$

	404 Not Found

	When the resource (path) is non existant Traffic Ops returns a 404:

[jvd@laika ~]$ curl -v -H'Cookie: mojolicious=eyJleHBpcmVzIjoxNDI5NDAyMjAxLCJhdXRoX2RhdGEiOiJhZG1pbiJ9--f990d03b7180b1ece97c3bb5ca69803cd6a79862;' -H "Accept: application/json" http://localhost:3000/api/1.1/asnsjj.json
* Hostname was NOT found in DNS cache
* Trying ::1...
* connect to ::1 port 3000 failed: Connection refused
* Trying 127.0.0.1...
* Connected to localhost (127.0.0.1) port 3000 (#0)
> GET /api/1.1/asnsjj.json HTTP/1.1
> User-Agent: curl/7.37.1
> Host: localhost:3000
> Cookie: mojolicious=eyJleHBpcmVzIjoxNDI5NDAyMjAxLCJhdXRoX2RhdGEiOiJhZG1pbiJ9--f990d03b7180b1ece97c3bb5ca69803cd6a79862;
> Accept: application/json
>
< HTTP/1.1 404 Not Found
* Server Mojolicious (Perl) is not blacklisted
< Server: Mojolicious (Perl)
< Content-Length: 75
< Cache-Control: no-cache, no-store, max-age=0, must-revalidate
< Content-Type: application/json
< Date: Sat, 18 Apr 2015 20:37:43 GMT
< Access-Control-Allow-Credentials: true
< Set-Cookie: mojolicious=eyJleHBpcmVzIjoxNDI5NDAzODYzLCJhdXRoX2RhdGEiOiJhZG1pbiJ9--8a5a61b91473bc785d4073fe711de8d2c63f02dd; expires=Sun, 19 Apr 2015 00:37:43 GMT; path=/; HttpOnly
< Access-Control-Allow-Methods: POST,GET,OPTIONS,PUT,DELETE
< Connection: keep-alive
< Access-Control-Allow-Headers: Origin, X-Requested-With, Content-Type, Accept
< Access-Control-Allow-Origin: http://localhost:8080
<
* Connection #0 to host localhost left intact
{"version":"1.1","alerts":[{"text":"Resource not found.","level":"error"}]}
[jvd@laika ~]$

	500 Internal Server Error

	When you are asking for a correct path, but the database doesn’t match, it returns a 500:

[jvd@laika ~]$ curl -v -H'Cookie: mojolicious=eyJleHBpcmVzIjoxNDI5NDAyMjAxLCJhdXRoX2RhdGEiOiJhZG1pbiJ9--f990d03b7180b1ece97c3bb5ca69803cd6a79862;' -H "Accept: application/json" http://localhost:3000/api/1.1/servers/hostname/jj/details.json
* Hostname was NOT found in DNS cache
* Trying ::1...
* connect to ::1 port 3000 failed: Connection refused
* Trying 127.0.0.1...
* Connected to localhost (127.0.0.1) port 3000 (#0)
> GET /api/1.1/servers/hostname/jj/details.json HTTP/1.1
> User-Agent: curl/7.37.1
> Host: localhost:3000
> Cookie: mojolicious=eyJleHBpcmVzIjoxNDI5NDAyMjAxLCJhdXRoX2RhdGEiOiJhZG1pbiJ9--f990d03b7180b1ece97c3bb5ca69803cd6a79862;
> Accept: application/json
>
< HTTP/1.1 500 Internal Server Error
* Server Mojolicious (Perl) is not blacklisted
< Server: Mojolicious (Perl)
< Cache-Control: no-cache, no-store, max-age=0, must-revalidate
< Content-Length: 93
< Set-Cookie: mojolicious=eyJhdXRoX2RhdGEiOiJhZG1pbiIsImV4cGlyZXMiOjE0Mjk0MDQzMDZ9--1b08977e91f8f68b0ff5d5e5f6481c76ddfd0853; expires=Sun, 19 Apr 2015 00:45:06 GMT; path=/; HttpOnly
< Content-Type: application/json
< Date: Sat, 18 Apr 2015 20:45:06 GMT
< Access-Control-Allow-Credentials: true
< Access-Control-Allow-Methods: POST,GET,OPTIONS,PUT,DELETE
< Connection: keep-alive
< Access-Control-Allow-Headers: Origin, X-Requested-With, Content-Type, Accept
< Access-Control-Allow-Origin: http://localhost:8080
<
* Connection #0 to host localhost left intact
{"alerts":[{"level":"error","text":"An error occurred. Please contact your administrator."}]}
[jvd@laika ~]$

The rest of the API documentation will only document the 200 OK case, where no errors have occured.

API 1.1 Reference

	ASN

	Cache Group

	CDN

	Change Logs

	Delivery Service

	hwinfo

	Parameter

	Physical Location

	Profiles

	Redis

	Regions

	Roles

	Server

	Static DNS Entries

	Status

	System

	TO Extensions

	Types

	Users

ASN

GET /api/1.1/asns.json

Authentication Required: Yes

Response Properties

	Parameter

	Type

	Description

	asns

	array

	A collection of asns

	>lastUpdated

	string

	The Time / Date this server entry was last updated

	>id

	string

	Local unique identifier for the ASN

	>asn

	string

	Autonomous System Numbers per APNIC for identifying a service provider.

	>cachegroup

	string

	Related cachegroup name

Response Example

{
 "response": {
 "asns": [
 {
 "lastUpdated": "2012-09-17 21:41:22",
 "id": "27",
 "asn": "7015",
 "cachegroup": "us-ma-woburn"
 },
 {
 "lastUpdated": "2012-09-17 21:41:22",
 "id": "28",
 "asn": "7016",
 "cachegroup": "us-pa-pittsburgh"
 }
]
 },
 "version": "1.1"
}

Cache Group

GET /api/1.1/cachegroups.json

Authentication Required: Yes

Response Properties

	Parameter

	Type

	Description

	longitude

	string

	Longitude for the Cache Group

	parentCachegroupId

	string

	Identifier that refers to the ‘id’ field of different Cache Group entry.

	lastUpdated

	string

	The Time / Date this entry was last updated

	typeName

	string

	The name of the type of Cache Group entry

	name

	string

	The name of the Cache Group entry

	typeId

	string

	Unique identifier for the ‘Type’ of Cache Group entry

	latitude

	string

	Latitude for the Cache Group

	id

	string

	Local unique identifier for the Cache Group

	shortName

	string

	Abbreviation of the Cache Group Name

Response Example

{
 "response": [
 {
 "longitude": "0",
 "parentCachegroupId": null,
 "lastUpdated": "2012-09-25 20:27:28",
 "typeName": "MID_LOC",
 "name": "dc-chicago",
 "parentCachegroupName": null,
 "typeId": "4",
 "latitude": "0",
 "id": "21",
 "shortName": "dcchi"
 },
 {
 "longitude": "0",
 "parentCachegroupId": null,
 "lastUpdated": "2012-09-25 20:32:03",
 "typeName": "MID_LOC",
 "name": "dc-cmc",
 "parentCachegroupName": null,
 "typeId": "4",
 "latitude": "0",
 "id": "22",
 "shortName": "dccmc"
 }
],
 "version": "1.1"
}

GET /api/1.1/cachegroups/trimmed.json

Authentication Required: Yes

Response Properties

	Parameter

	Type

	Description

	name

	string

	

Response Example

 {
 "response": [
 {
 "name": "dc-chicago"
 },
 {
 "name": "dc-cmc"
 }
],
 "version": "1.1"
}

GET /api/1.1/cachegroup/:parameter_id/parameter.json

Authentication Required: Yes

Request Route Parameters

	Name

	Required

	Description

	parameter_id

	yes

	

Response Properties

	Parameter

	Type

	Description

	cachegroups

	array

	

	>name

	string

	

	>id

	string

	

Response Example

{
 "response": {
 "cachegroups": [
 {
 "name": "dc-chicago",
 "id": "21"
 },
 {
 "name": "dc-cmc",
 "id": "22"
 }
]
 },
 "version": "1.1"
}

GET /api/1.1/cachegroupparameters.json

Authentication Required: Yes

Response Properties

	Parameter

	Type

	Description

	cachegroupParameters

	array

	A collection of cache group parameters.

	>parameter

	string

	

	>last_updated

	string

	

	>cachegroup

	string

	

Response Example

{
 "response": {
 "cachegroupParameters": [
 {
 "parameter": "379",
 "last_updated": "2013-08-05 18:49:37",
 "cachegroup": "us-ca-sanjose"
 },
 {
 "parameter": "380",
 "last_updated": "2013-08-05 18:49:37",
 "cachegroup": "us-ca-sanjose"
 },
 {
 "parameter": "379",
 "last_updated": "2013-08-05 18:49:37",
 "cachegroup": "us-ma-woburn"
 }
]
 },
 "version": "1.1"
}

GET /api/1.1/cachegroups/:parameter_id/parameter/available.json

Authentication Required: Yes

Request Route Parameters

	Name

	Required

	Description

	parameter_id

	yes

	

Response Properties

	Parameter

	Type

	Description

	name

	
	

	id

	
	

Response Example

{
 "response": [
 {
 "name": "dc-chicago",
 "id": "21"
 },
 {
 "name": "dc-cmc",
 "id": "22"
 }
],
 "version": "1.1"
}

CDN

Health

GET /api/1.1/cdns/health.json

Authentication Required: Yes

Response Properties

	Parameter

	Type

	Description

	totalOnline

	int

	Total number of online caches across all CDNs.

	totalOffline

	int

	Total number of offline caches across all CDNs.

	cachegroups

	array

	A collection of cache groups.

	>online

	int

	The number of online caches for the cache group

	>offline

	int

	The number of offline caches for the cache
group.

	>name

	string

	Cache group name.

Response Example

{
 "response": {
 "totalOnline": 148,
 "totalOffline": 0,
 "cachegroups": [
 {
 "online": 8,
 "offline": 0,
 "name": "us-co-denver"
 },
 {
 "online": 7,
 "offline": 0,
 "name": "us-de-newcastle"
 }
]
 },
 "version": "1.1"
}

GET /api/1.1/cdns/:name/health.json

Retrieves the health of all locations (cache groups) for a given CDN.

Authentication Required: Yes

Request Route Parameters

	Name

	Required

	Description

	name

	yes

	

Response Properties

	Parameter

	Type

	Description

	totalOnline

	int

	Total number of online caches across the
specified CDN.

	totalOffline

	int

	Total number of offline caches across the
specified CDN.

	cachegroups

	array

	A collection of cache groups.

	>online

	int

	The number of online caches for the cache group

	>offline

	int

	The number of offline caches for the cache
group.

	
	name

	string

	Cache group name.

Response Example

{
 "response": {
 "totalOnline": 148,
 "totalOffline": 0,
 "cachegroups": [
 {
 "online": 8,
 "offline": 0,
 "name": "us-co-denver"
 },
 {
 "online": 7,
 "offline": 0,
 "name": "us-de-newcastle"
 }
]
 },
 "version": "1.1"
}

GET /api/1.1/cdns/usage/overview.json

Retrieves the high-level CDN usage metrics.

Authentication Required: Yes

Response Properties

	Parameter

	Type

	Description

	currentGbps

	number

	

	tps

	int

	

	maxGbps

	int

	

Response Example

{
 "response": {
 "currentGbps": 149.368167,
 "tps": 36805,
 "maxGbps": 3961
 },
 "version": "1.1"
}

GET /api/1.1/cdns/capacity.json

Retrieves the aggregate capacity percentages of all locations (cache groups) for a given CDN.

Response Properties

	Parameter

	Type

	Description

	availablePercent

	number

	

	unavailablePercent

	number

	

	utilizedPercent

	number

	

	maintenancePercent

	number

	

Response Example

{
 "response": {
 "availablePercent": 89.0939840205533,
 "unavailablePercent": 0,
 "utilizedPercent": 10.9060020300395,
 "maintenancePercent": 0.0000139494071146245
 },
 "version": "1.1"
}

Routing

GET /api/1.1/cdns/routing.json

Authentication Required: Yes

Retrieves the aggregate routing percentages of all locations (cache groups) for a given CDN.

Response Properties

	Parameter

	Type

	Description

	staticRoute

	number

	Used pre-configured DNS entries.

	miss

	number

	No location available for client IP.

	geo

	number

	Used 3rd party geo-IP mapping.

	err

	number

	Error localizing client IP.

	cz

	number

	Used Coverage Zone geo-IP mapping.

	dsr

	number

	Overflow traffic sent to secondary CDN.

Response Example

{
 "response": {
 "staticRoute": 0,
 "miss": 0,
 "geo": 37.8855391018869,
 "err": 0,
 "cz": 62.1144608981131,
 "dsr": 0
 },
 "version": "1.1"
 }

Metrics

GET /api/1.1/cdns/metric_types/:metric/start_date/:start/end_date/:end.json

Authentication Required: Yes

Retrieves edge metrics of one or all locations (cache groups).

Request Route Parameters

	Name

	Required

	Description

	metric_type

	yes

	ooff, origin_tps

	start

	yes

	UNIX time, yesterday, now

	end

	yes

	UNIX time, yesterday, now

Response Properties

	Parameter

	Type

	Description

	stats

	hash

	

	>count

	string

	

	>98thPercentile

	string

	

	>min

	string

	

	>max

	string

	

	>5thPercentile

	string

	

	>95thPercentile

	string

	

	>mean

	string

	

	>sum

	string

	

	data

	array

	

	>time

	int

	

	>value

	number

	

	label

	string

	

Response Example

{
 "response": [
 {
 "stats": {
 "count": 1,
 "98thPercentile": 1668.03,
 "min": 1668.03,
 "max": 1668.03,
 "5thPercentile": 1668.03,
 "95thPercentile": 1668.03,
 "mean": 1668.03,
 "sum": 1668.03
 },
 "data": [
 [
 1425135900000,
 1668.03
],
 [
 1425136200000,
 null
]
],
 "label": "Origin TPS"
 }
],
 "version": "1.1"
}

Domains

GET /api/1.1/cdns/domains.json

Authentication Required: Yes

Response Properties

	Parameter

	Type

	Description

	profileId

	string

	

	parameterId

	string

	

	profileName

	string

	

	profileDescription

	string

	

	domainName

	string

	

Response Example

{
 "response": [
 {
 "profileId": "5",
 "parameterId": "404",
 "profileName": "CR_FOO",
 "profileDescription": "Comcast Content Router for foo.domain.net",
 "domainName": "foo.domain.net"
 },
 {
 "profileId": "8",
 "parameterId": "405",
 "profileName": "CR_BAR",
 "profileDescription": "Comcast Content Router for bar.domain.net",
 "domainName": "bar.domain.net"
 }
],
 "version": "1.1"
}

Topology

GET /api/1.1/cdns/:cdn_name/configs.json

Retrieves CDN config information.

Authentication Required: Yes

Request Route Parameters

	Name

	Required

	Description

	cdn_name

	yes

	Your cdn name or, all

Response Properties

	Parameter

	Type

	Description

	id

	string

	

	value

	string

	

	name

	string

	

	config_file

	string

	

Response Example

TBD

GET /api/1.1/cdns/:name/configs/monitoring.json

Retrieves CDN monitoring information.

Authentication Required: Yes

Request Route Parameters

	Name

	Required

	Description

	name

	yes

	

Response Properties

	Parameter

	Type

	Description

	trafficServers

	array

	A collection of
Traffic Servers.

	>profile

	string

	

	>ip

	string

	

	>status

	string

	

	>cacheGroup

	string

	

	>ip6

	string

	

	>port

	int

	

	>hostName

	string

	

	>fqdn

	string

	

	>interfaceName

	string

	

	>type

	string

	

	>hashId

	string

	

	cacheGroups

	array

	A collection of
cache groups.

	>coordinates

	hash

	

	>>longitude

	number

	

	>>latitude

	number

	

	>name

	string

	

	config

	hash

	

	>hack.ttl

	int

	

	>tm.healthParams.polling.url

	string

	

	>tm.dataServer.polling.url

	string

	

	>health.timepad

	int

	

	>tm.polling.interval

	int

	

	>health.threadPool

	int

	

	>health.polling.interval

	int

	

	>health.event-count

	int

	

	>tm.crConfig.polling.url

	number

	

	>CDN_name

	number

	

	trafficMonitors

	array

	A collection of
Traffic Monitors.

	>profile

	string

	

	>location

	string

	

	>ip

	string

	

	>status

	string

	

	>ip6

	string

	

	>port

	int

	

	>hostName

	string

	

	>fqdn

	string

	

	deliveryServices

	array

	A collection of
delivery services.

	>xmlId

	string

	

	>totalTpsThreshold

	int

	

	>status

	string

	

	>totalKbpsThreshold

	int

	

	profiles

	array

	A collection of
profiles.

	>parameters

	hash

	

	>>health.connection.timeout

	int

	

	>>health.polling.url

	string

	

	>>health.threshold.queryTime

	int

	

	>>history.count

	int

	

	>>health.threshold.availableBandwidthInKbps

	string

	

	>>health.threshold.loadavg

	string

	

	>name

	string

	

	>type

	string

	

Response Example

TBD

GET /api/1.1/cdns/:name/configs/routing.json

Retrieves CDN routing information.

Authentication Required: Yes

Request Route Parameters

	Name

	Required

	Description

	name

	yes

	

Response Properties

	Parameter

	Type

	Description

	trafficServers

	array

	A collection of Traffic Servers.

	>profile

	string

	

	>ip

	string

	

	>status

	string

	

	>cacheGroup

	string

	

	>ip6

	string

	

	>port

	int

	

	>deliveryServices

	array

	

	>>xmlId

	string

	

	>>remaps

	array

	

	>>hostName

	string

	

	>fqdn

	string

	

	>interfaceName

	string

	

	>type

	string

	

	>hashId

	string

	

	stats

	hash

	

	>trafficOpsPath

	string

	

	>cdnName

	string

	

	>trafficOpsVersion

	string

	

	>trafficOpsUser

	string

	

	>date

	int

	

	>trafficOpsHost

	string

	

	cacheGroups

	array

	A collection of cache groups.

	>coordinates

	hash

	

	>>longitude

	number

	

	>>latitude

	number

	

	>name

	string

	

	config

	hash

	

	>tld.soa.admin

	string

	

	>tcoveragezone.polling.interval

	int

	

	>geolocation.polling.interval

	int

	

	>tld.soa.expire

	int

	

	>coveragezone.polling.url

	string

	

	>tld.soa.minimum

	int

	

	>geolocation.polling.url

	string

	

	>domain_name

	string

	

	>tld.ttls.AAAA

	int

	

	>tld.soa.refresh

	int

	

	>tld.ttls.NS

	int

	

	>tld.ttls.SOA

	int

	

	>geolocation6.polling.interval

	int

	

	>tld.ttls.A

	int

	

	>tld.soa.retry

	int

	

	>geolocation6.polling.url

	string

	

	trafficMonitors

	array

	A collection of Traffic Monitors.

	>profile

	string

	

	>location

	string

	

	>ip

	string

	

	>status

	string

	

	>ip6

	string

	

	>port

	int

	

	>hostName

	string

	

	>fqdn

	string

	

	deliveryServices

	array

	A collection of delivery
services.

	>xmlId

	string

	

	>ttl

	int

	

	>geoEnabled

	string

	

	>coverageZoneOnly

	boolean

	

	>matchSets

	array

	

	>>protocol

	string

	

	>>matchList

	array

	

	>>>regex

	string

	

	>>>matchType

	string

	

	>bypassDestination

	hash

	

	>>maxDnsIpsForLocation

	int

	

	>>ttl

	int

	

	>>type

	string

	

	>ttls

	hash

	

	>>A

	int

	

	>>SOA

	int

	

	>>NS

	int

	

	>>AAAA

	int

	

	>missCoordinates

	hash

	

	>>longitude

	number

	

	>>latitude

	number

	

	>soa

	hash

	

	>>admin

	string

	

	>>retry

	int

	

	>>minimum

	int

	

	>>refresh

	int

	

	>>expire

	int

	

	trafficRouters

	hash

	

	>profile

	int

	

	>location

	string

	

	>ip

	string

	

	>status

	string

	

	>ip6

	string

	

	>port

	int

	

	>hostName

	string

	

	>fqdn

	string

	

	>apiPort

	int

	

Response Example

	::

	TBD

DNSSEC Keys

GET /api/1.1/cdns/name/:name/dnsseckeys.json

Gets a list of dnsseckeys for CDN and all associated Delivery Services.
Before returning response to user, check to make sure keys aren’t expired. If they are expired, generate new ones.
Before returning response to user, make sure dnssec keys for all delivery services exist. If they don’t exist, create them.

Authentication Required: Yes

Role Required: Admin

Request Route Parameters

	Name

	Required

	Description

	name

	yes

	

Response Properties

	Parameter

	Type

	Description

	cdn name/ds xml_id

	string

	identifier for ds or cdn

	>zsk/ksk

	array

	collection of zsk/ksk data

	>>ttl

	string

	time-to-live for dnssec requests

	>>inceptionDate

	string

	epoch timestamp for when the keys were created

	>>expirationDate

	string

	epoch timestamp representing the expiration of the keys

	>>private

	string

	encoded private key

	>>public

	string

	encoded public key

	>>name

	string

	domain name

	version

	string

	API version

Response Example

{
 "response": {
 "cdn1": {
 "zsk": {
 "ttl": "60",
 "inceptionDate": "1426196750",
 "private": "zsk private key",
 "public": "zsk public key",
 "expirationDate": "1428788750",
 "name": "foo.kabletown.com."
 },
 "ksk": {
 "name": "foo.kabletown.com.",
 "expirationDate": "1457732750",
 "public": "ksk public key",
 "private": "ksk private key",
 "inceptionDate": "1426196750",
 "ttl": "60"
 }
 },
 "ds-01": {
 "zsk": {
 "ttl": "60",
 "inceptionDate": "1426196750",
 "private": "zsk private key",
 "public": "zsk public key",
 "expirationDate": "1428788750",
 "name": "ds-01.foo.kabletown.com."
 },
 "ksk": {
 "name": "ds-01.foo.kabletown.com.",
 "expirationDate": "1457732750",
 "public": "ksk public key",
 "private": "ksk private key",
 "inceptionDate": "1426196750"
 }
 },
 ... repeated for each ds in the cdn
 },
 "version": "1.1"
}

GET /api/1.1/cdns/name/:name/dnsseckeys/delete.json

Delete dnssec keys for a cdn and all associated delivery services.

Authentication Required: Yes

Role Required: Admin

Request Route Parameters

	Name

	Required

	Description

	name

	yes

	name of the CDN for which you want to delete dnssec keys

Response Properties

	Parameter

	Type

	Description

	response

	string

	success response

Response Example

{
 "version": "1.1",
 "response": "Successfully deleted dnssec keys for <cdn>"
}

POST /api/1.1/deliveryservices/dnsseckeys/generate

Generates zsk and ksk keypairs for a cdn and all associated delivery services.

Authentication Required: Yes

Role Required: Admin

Request Properties

	Parameter

	Type

	Description

	key

	string

	name of the cdn

	name

	string

	domain name of the cdn

	ttl

	string

	time to live

	kskExpirationDays

	string

	Expiration (in days) for the key signing keys

	zskExpirationDays

	string

	Expiration (in days) for the zone signing keys

Request Example

{
 "key": "cdn1",
 "name" "ott.kabletown.com",
 "ttl": "60",
 "kskExpirationDays": "365",
 "zskExpirationDays": "90"
}

Response Properties

	Parameter

	Type

	Description

	response

	string

	response string

	version

	string

	API version

Response Example

{
 "version": "1.1",
 "response": "Successfully created dnssec keys for cdn1"
}

Change Logs

GET /api/1.1/logs.json

Response Properties

	Parameter

	Type

	Description

	ticketNum

	string

	Optional field to cross reference with any bug tracking systems

	level

	string

	Log categories for each entry, examples: ‘UICHANGE’, ‘OPER’, ‘APICHANGE’.

	lastUpdated

	string

	Local unique identifier for the Log

	user

	string

	Current user who made the change that was logged

	id

	string

	Local unique identifier for the Log entry

	message

	string

	Log detail about what occurred

Response Example

{
 "response": [
 {
 "ticketNum": null,
 "level": "OPER",
 "lastUpdated": "2015-02-04 22:59:13",
 "user": "mtorlu9137e",
 "id": "22661",
 "message": "Snapshot CRConfig created."
 },
 {
 "ticketNum": null,
 "level": "APICHANGE",
 "lastUpdated": "2015-02-03 17:04:20",
 "user": "admin",
 "id": "22658",
 "message": "Update server odol-atsec-nyc-23.kbaletown.net status=REPORTED"
 },
],
 "version": "1.1"
}

GET /api/1.1/logs/:days/days.json

Request Route Parameters

	Name

	Required

	Description

	days

	yes

	Number of days.

Response Properties

	Parameter

	Type

	Description

	ticketNum

	string

	

	level

	string

	

	lastUpdated

	string

	

	user

	string

	

	id

	string

	

	message

	string

	

Response Example

{
 "response": [
 {
 "ticketNum": null,
 "level": "OPER",
 "lastUpdated": "2015-02-04 22:59:13",
 "user": "mtorlu9137e",
 "id": "22661",
 "message": "Snapshot CRConfig created."
 },
 {
 "ticketNum": null,
 "level": "APICHANGE",
 "lastUpdated": "2015-02-03 17:04:20",
 "user": "admin",
 "id": "22658",
 "message": "Update server odol-atsec-nyc-23.kabletown.net status=REPORTED"
 }
],
 "version": "1.1"
}

GET /api/1.1/logs/newcount.json

Response Properties

	Parameter

	Type

	Description

	newLogcount

	string

	

Response Example

{
 "response": {
 "newLogcount": 0
 },
 "version": "1.1"
}

Delivery Service

GET /api/1.1/deliveryservices.json

Retrieves all delivery services. See also Using Traffic Ops - Delivery Service [http://traffic-control-cdn.net/docs/latest/admin/traffic_ops_using.html#delivery-service].

Authentication Required: Yes

Response Properties

	Parameter

	Type

	Description

	active

	bool

	true if active, false if inactive (inact).

	cacheurl

	string

	Cache URL rule to apply to this delivery service.

	protocol

	string

	
	0: serve with http:// at EDGE

	1: serve with https:// at EDGE

	2: serve with both http:// and https:// at EDGE

	ccrDnsTtl

	string

	The TTL of the DNS response for A or AAAA queries requesting the IP address of the tr. host.

	checkPath

	string

	The path portion of the URL to check this deliveryservice for health.

	dnsBypassIp

	string

	The IPv4 IP to use for bypass on a DNS deliveryservice - bypass starts when serving more than the
globalMaxMbps traffic on this deliveryservice.

	dnsBypassIp6

	string

	The IPv6 IP to use for bypass on a DNS deliveryservice - bypass starts when serving more than the
globalMaxMbps traffic on this deliveryservice.

	dnsBypassTtl

	string

	The TTL of the DNS bypass response.

	dscp

	string

	The Differentiated Services Code Point (DSCP) with which to mark downstream (EDGE -> customer) traffic.

	edgeHeaderRewrite

	string

	The EDGE header rewrite actions to perform.

	geoLimit

	string

	
	0: None - no limitations

	1: Only route on CZF file hit

	2: Only route on CZF hit or when from USA

Note that this does not prevent access to content or makes content secure; it just prevents
routing to the content by Traffic Router.

	globalMaxMbps

	string

	The maximum global bandwidth allowed on this deliveryservice. If exceeded, the traffic routes to the
dnsByPassIp* for DNS deliveryservices and to the httpBypassFqdn for HTTP deliveryservices.

	globalMaxTps

	string

	The maximum global transactions per second allowed on this deliveryservice. When this is exceeded
traffic will be sent to the dnsByPassIp* for DNS deliveryservices and to the httpBypassFqdn for
HTTP deliveryservices

	headerRewrite

	string

	The EDGE header rewrite actions to perform.

	httpBypassFqdn

	string

	The HTTP destination to use for bypass on an HTTP deliveryservice - bypass starts when serving more than the
globalMaxMbps traffic on this deliveryservice.

	id

	string

	The deliveryservice id (database row number).

	infoUrl

	string

	Use this to add a URL that points to more information about that deliveryservice.

	ipv6RoutingEnabled

	bool

	false: send IPv4 address of Traffic Router to client on HTTP type del.

	longDesc

	string

	Description field 1.

	longDesc1

	string

	Description field 2.

	longDesc2

	string

	Description field 2.

	matchList

	array

	Array of matchList hashes.

	>>type

	string

	The type of MatchList (one of :ref:to-api-types use_in_table=’regex’).

	>>setNumber

	string

	The set Number of the matchList.

	>>pattern

	string

	The regexp for the matchList.

	maxDnsAnswers

	string

	The maximum number of IPs to put in a A/AAAA response for a DNS deliveryservice (0 means all
available).

	missLat

	string

	The latitude to use when the client cannot be found in the CZF or the Geo lookup.

	missLong

	string

	The longitude to use when the client cannot be found in the CZF or the Geo lookup.

	midHeaderRewrite

	string

	The MID header rewrite actions to perform.

	multiSiteOrigin

	string

	
Is the Multi Site Origin feature enabled for this delivery service. See rl-mulit-site-origin

	orgServerFqdn

	string

	The origin server base URL (FQDN when used in this instance, includes the
protocol (http:// or https://) for use in retrieving content from the origin server.

	profileDescription

	string

	The description of the Traffic Router Profile with which this deliveryservice is associated.

	profileName

	string

	The name of the Traffic Router Profile with which this deliveryservice is associated.

	qstringIgnore

	string

	
	0: no special query string handling; it is for use in the cache-key and pass up to origin.

	1: ignore query string in cache-key, but pass it up to parent and or origin.

	2: drop query string at edge, and do not use it in the cache-key.

	regexRemap

	string

	Regex Remap rule to apply to this delivery service at the Edge tier.

	remapText

	string

	Additional raw remap line text.

	signed

	bool

	
	false: token based auth (see :ref:token-based-auth) is not enabled for this deliveryservice.

	true: token based auth is enabled for this deliveryservice.

	rangeRequestHandling

	string

	How to treat range requests:

	0 Do not cache (ranges requested from files taht are already cached due to a non range request will be a HIT)

	1 Use the background_fetch [https://docs.trafficserver.apache.org/en/latest/reference/plugins/background_fetch.en.html] plugin.

	2 Use the cache_range_requests plugin.

	type

	string

	The type of this deliveryservice (one of :ref:to-api-types use_in_table=’deliveryservice’).

	xmlId

	string

	Unique string that describes this deliveryservice.

Response Example

{
 "response": [
 {
 "active": true,
 "cacheurl": null,
 "protocol": "0",
 "ccrDnsTtl": "3600",
 "checkPath": "/crossdomain.xml",
 "dnsBypassIp": "",
 "dnsBypassIp6": null,
 "dnsBypassTtl": null,
 "dscp": "40",
 "geoLimit": "0",
 "globalMaxMbps": "0",
 "globalMaxTps": "0",
 "headerRewrite": "add-header X-Powered-By: KABLETOWN [L]",
 "edgeHeaderRewrite": "add-header X-Powered-By: KABLETOWN [L]",
 "midHeaderRewrite": null,
 "httpBypassFqdn": "",
 "rangeRequestHandling": "0",
 "id": "12",
 "infoUrl": "",
 "ipv6RoutingEnabled": false,
 "longDesc": "long_desc",
 "longDesc1": "long_desc_1",
 "longDesc2": "long_desc_2",
 "matchList": [
 {
 "type": "HOST_REGEXP",
 "setNumber": "0",
 "pattern": ".*\\.images\\..*"
 }
],
 "maxDnsAnswers": "0",
 "missLat": "41.881944",
 "missLong": "-87.627778",
 "orgServerFqdn": "http://cdl.origin.kabletown.net",
 "profileDescription": "Comcast Content Router for cdn2.comcast.net",
 "profileName": "EDGE_CDN2",
 "qstringIgnore": "0",
 "remapText": null,
 "regexRemap": null,
 "signed": true,
 "type": "HTTP",
 "xmlId": "cdl-c2"
 },
 { .. },
 { .. }
],
 "version": "1.1"
}

GET /api/1.1/deliveryservices/:id.json

Retrieves a specific delivery service. See also Using Traffic Ops - Delivery Service [http://traffic-control-cdn.net/docs/latest/admin/traffic_ops_using.html#delivery-service].

Authentication Required: Yes

Response Properties

	Parameter

	Type

	Description

	active

	bool

	true if active, false if inactive (inact).

	cacheurl

	string

	Cache URL rule to apply to this delivery service.

	protocol

	string

	
	0: serve with http:// at EDGE

	1: serve with https:// at EDGE

	2: serve with both http:// and https:// at EDGE

	ccrDnsTtl

	string

	The TTL of the DNS response for A or AAAA queries requesting the IP address of the tr. host.

	checkPath

	string

	The path portion of the URL to check this deliveryservice for health.

	dnsBypassIp

	string

	The IPv4 IP to use for bypass on a DNS deliveryservice - bypass starts when serving more than the
globalMaxMbps traffic on this deliveryservice.

	dnsBypassIp6

	string

	The IPv6 IP to use for bypass on a DNS deliveryservice - bypass starts when serving more than the
globalMaxMbps traffic on this deliveryservice.

	dnsBypassTtl

	string

	The TTL of the DNS bypass response.

	dscp

	string

	The Differentiated Services Code Point (DSCP) with which to mark downstream (EDGE -> customer) traffic.

	edgeHeaderRewrite

	string

	The EDGE header rewrite actions to perform.

	geoLimit

	string

	
	0: None - no limitations

	1: Only route on CZF file hit

	2: Only route on CZF hit or when from USA

Note that this does not prevent access to content or makes content secure; it just prevents
routing to the content by Traffic Router.

	globalMaxMbps

	string

	The maximum global bandwidth allowed on this deliveryservice. If exceeded, the traffic routes to the
dnsByPassIp* for DNS deliveryservices and to the httpBypassFqdn for HTTP deliveryservices.

	globalMaxTps

	string

	The maximum global transactions per second allowed on this deliveryservice. When this is exceeded
traffic will be sent to the dnsByPassIp* for DNS deliveryservices and to the httpBypassFqdn for
HTTP deliveryservices

	headerRewrite

	string

	The EDGE header rewrite actions to perform.

	httpBypassFqdn

	string

	The HTTP destination to use for bypass on an HTTP deliveryservice - bypass starts when serving more than the
globalMaxMbps traffic on this deliveryservice.

	id

	string

	The deliveryservice id (database row number).

	infoUrl

	string

	Use this to add a URL that points to more information about that deliveryservice.

	ipv6RoutingEnabled

	bool

	false: send IPv4 address of Traffic Router to client on HTTP type del.

	longDesc

	string

	Description field 1.

	longDesc1

	string

	Description field 2.

	longDesc2

	string

	Description field 2.

	matchList

	array

	Array of matchList hashes.

	>>type

	string

	The type of MatchList (one of :ref:to-api-types use_in_table=’regex’).

	>>setNumber

	string

	The set Number of the matchList.

	>>pattern

	string

	The regexp for the matchList.

	maxDnsAnswers

	string

	The maximum number of IPs to put in a A/AAAA response for a DNS deliveryservice (0 means all
available).

	missLat

	string

	The latitude to use when the client cannot be found in the CZF or the Geo lookup.

	missLong

	string

	The longitude to use when the client cannot be found in the CZF or the Geo lookup.

	midHeaderRewrite

	string

	The MID header rewrite actions to perform.

	orgServerFqdn

	string

	The origin server base URL (FQDN when used in this instance, includes the
protocol (http:// or https://) for use in retrieving content from the origin server.

	profileDescription

	string

	The description of the Traffic Router Profile with which this deliveryservice is associated.

	profileName

	string

	The name of the Traffic Router Profile with which this deliveryservice is associated.

	qstringIgnore

	string

	
	0: no special query string handling; it is for use in the cache-key and pass up to origin.

	1: ignore query string in cache-key, but pass it up to parent and or origin.

	2: drop query string at edge, and do not use it in the cache-key.

	regexRemap

	string

	Regex Remap rule to apply to this delivery service at the Edge tier.

	remapText

	string

	Additional raw remap line text.

	signed

	bool

	
	false: token based auth (see :ref:token-based-auth) is not enabled for this deliveryservice.

	true: token based auth is enabled for this deliveryservice.

	rangeRequestHandling

	string

	How to treat range requests:

	0 Do not cache (ranges requested from files taht are already cached due to a non range request will be a HIT)

	1 Use the background_fetch [https://docs.trafficserver.apache.org/en/latest/reference/plugins/background_fetch.en.html] plugin.

	2 Use the cache_range_requests plugin.

	type

	string

	The type of this deliveryservice (one of :ref:to-api-types use_in_table=’deliveryservice’).

	xmlId

	string

	Unique string that describes this deliveryservice.

Response Example

{
 "response": [
 {
 "active": true,
 "cacheurl": null,
 "protocol": "0",
 "ccrDnsTtl": "3600",
 "checkPath": "/crossdomain.xml",
 "dnsBypassIp": "",
 "dnsBypassIp6": null,
 "dnsBypassTtl": null,
 "dscp": "40",
 "geoLimit": "0",
 "globalMaxMbps": "0",
 "globalMaxTps": "0",
 "headerRewrite": "add-header X-Powered-By: KABLETOWN [L]",
 "edgeHeaderRewrite": "add-header X-Powered-By: KABLETOWN [L]",
 "midHeaderRewrite": null,
 "httpBypassFqdn": "",
 "rangeRequestHandling": "0",
 "id": "12",
 "infoUrl": "",
 "ipv6RoutingEnabled": false,
 "longDesc": "long_desc",
 "longDesc1": "long_desc_1",
 "longDesc2": "long_desc_2",
 "matchList": [
 {
 "type": "HOST_REGEXP",
 "setNumber": "0",
 "pattern": ".*\\.images\\..*"
 }
],
 "maxDnsAnswers": "0",
 "missLat": "41.881944",
 "missLong": "-87.627778",
 "orgServerFqdn": "http://cdl.origin.kabletown.net",
 "profileDescription": "Comcast Content Router for cdn2.comcast.net",
 "profileName": "EDGE_CDN2",
 "qstringIgnore": "0",
 "remapText": null,
 "regexRemap": null,
 "signed": true,
 "type": "HTTP",
 "xmlId": "cdl-c2"
 }
],
 "version": "1.1"
}

Health

GET /api/1.1/deliveryservices/:id/capacity.json

Retrieves the capacity percentages of a delivery service.

Authentication Required: Yes

Request Route Parameters

	Name

	Required

	Description

	id

	yes

	delivery service id.

Response Properties

	Parameter

	Type

	Description

	availablePercent

	number

	The percentage of server capacity assigned to
the delivery service that is available.

	unavailablePercent

	number

	The percentage of server capacity assigned to the
delivery service that is unavailable.

	utilizedPercent

	number

	The percentage of server capacity assigned to the
delivery service being used.

	maintenancePercent

	number

	The percentage of server capacity assigned to the
delivery service that is down for maintenance.

Response Example

{
 "response": {
 "availablePercent": 89.0939840205533,
 "unavailablePercent": 0,
 "utilizedPercent": 10.9060020300395,
 "maintenancePercent": 0.0000139494071146245
 },
 "version": "1.1"
}

GET /api/1.1/deliveryservices/:id/routing.json

Retrieves the routing method percentages of a delivery service.

Authentication Required: Yes

Request Route Parameters

	Name

	Required

	Description

	id

	yes

	delivery service id.

Response Properties

	Parameter

	Type

	Description

	staticRoute

	number

	The percentage of Traffic Router responses for this deliveryservice satisfied with pre-configured DNS entries.

	miss

	number

	The percentage of Traffic Router responses for this deliveryservice that were a miss (no location available for client IP).

	geo

	number

	The percentage of Traffic Router responses for this deliveryservice satisfied using 3rd party geo-IP mapping.

	err

	number

	The percentage of Traffic Router requests for this deliveryservice resulting in an error.

	cz

	number

	The percentage of Traffic Router requests for this deliveryservice satisfied by a CZF hit.

	dsr

	number

	The percentage of Traffic Router requests for this deliveryservice satisfied by sending the
client to the overflow CDN.

Response Example

{
 "response": {
 "staticRoute": 0,
 "miss": 0,
 "geo": 37.8855391018869,
 "err": 0,
 "cz": 62.1144608981131,
 "dsr": 0
 },
 "version": "1.1"
}

Metrics

GET /api/1.1/deliveryservices/:id/edge/metric_types/:metric/start_date/:start/end_date/:end/\
interval/:interval/window_start/:window_start/window_end/:window_end.json

Retrieves edge summary metrics of all cache groups for a delivery service.

Authentication Required: Yes

Request Route Parameters

	Name

	Required

	Description

	id

	yes

	The delivery service id.

	metric

	yes

	One of the following: “kbps”, “tps_total”, “tps_2xx”, “tps_3xx”, “tps_4xx”,
“tps_5xx”.

	start

	yes

	UNIX time, yesterday, now.

	end

	yes

	UNIX time, yesterday, now.

	interval

	yes

	> 10

	window_start

	yes

	UNIX time, yesterday, now.

	window_end

	yes

	UNIX time, yesterday, now.

Request Query Parameters

	Name

	Required

	Description

	summary

	no

	Flag used to return summary metrics only.

Response Content Type: application/json

Response Properties

	Parameter

	Type

	Description

	ninetyFifth

	number

	

	average

	int

	

	min

	number

	

	max

	number

	

	total

	number

	

Response Example

{
 "response": {
 "ninetyFifth": 183982091.479,
 "average": 97444798,
 "min": 31193860.46233,
 "max": 205772883.28367,
 "total": 3643217414091.13
 },
 "version": "1.1"
}

GET /api/1.1/usage/deliveryservices/:ds/cachegroups/:name/metric_types/:metric/start_date/:start_date/\
end_date/:end_date/interval/:interval.json

Retrieves edge metrics of one or all locations (cache groups) for a delivery service.

Authentication Required: Yes

Request Route Parameters

	Name

	Required

	Description

	id

	yes

	The delivery service id.

	cache_group_name

	yes

	name, all.

	usage_type

	yes

	One of the following: “kbps”, “tps_total”, “tps_2xx”, “tps_3xx”, “tps_4xx”,
“tps_5xx”.

	start

	yes

	UNIX time, yesterday, now.

	end

	yes

	UNIX time, yesterday, now.

	interval

	yes

	> 10

Response Properties

	Parameter

	Type

	Description

	deliveryServiceName

	string

	

	statName

	string

	

	deliveryServiceId

	string

	

	interval

	int

	

	series

	array

	

	>>timeBase

	int

	

	>>samples

	array

	

	end

	string

	

	elapsed

	number

	

	cdnName

	string

	

	hostName

	string

	

	summary

	hash

	

	>``ninetyFifth``

	number

	

	>``average``

	int

	

	>``min``

	number

	

	>``max``

	number

	

	>``total``

	number

	

	cacheGroupName

	string

	

	start

	string

	

Response Example

TBD

GET /api/1.1/cdns/peakusage/:peak_usage_type/deliveryservice/:ds/cachegroup/:name/start_date/:start/\
end_date/:end/interval/:interval.json

Authentication Required: Yes

Response Properties

	Parameter

	Type

	Description

	TotalGBytesServedSinceStart

	number

	

	
	
	

	>>item

	number

	

	>>item

	number

	

	>>item

	number

	

	>>item

	number

	

	>>item

	number

	

	>>item

	number

	

Response Example

TBD

GET /api/1.1/deliveryservices/:id/:server_type/metrics/:metric_type/:start/:end.json

Retrieves detailed and summary metrics for MIDs or EDGEs for a delivery service.

Authentication Required: No

Request Route Parameters

	Name

	Required

	Description

	id

	yes

	The delivery service id.

	server_type

	yes

	EDGE or MID.

	metric_type

	yes

	One of the following: “kbps”, “tps_total”, “tps_2xx”, “tps_3xx”, “tps_4xx”,
“tps_5xx”.

	start

	yes

	UNIX time, yesterday, now.

	end

	yes

	UNIX time, yesterday, now.

Response Properties

	Parameter

	Type

	Description

	stats

	hash

	

	>>count

	int

	

	>>98thPercentile

	number

	

	>>min

	number

	

	>>max

	number

	

	>>5thPercentile

	number

	

	>>95thPercentile

	number

	

	>>median

	number

	

	>>mean

	number

	

	>>stddev

	number

	

	>>sum

	number

	

	data

	array

	

	>>item

	array

	

	>>time

	number

	

	>>value

	number

	

	label

	string

	

Response Example

{
 "response": [
 {
 "stats": {
 "count": 988,
 "98thPercentile": 16589105.55958,
 "min": 3185442.975,
 "max": 17124754.257,
 "5thPercentile": 3901253.95445,
 "95thPercentile": 16013210.034,
 "median": 8816895.576,
 "mean": 8995846.31741194,
 "stddev": 3941169.83683573,
 "sum": 333296106.060112
 },
 "data": [
 [
 1414303200000,
 12923518.466
],
 [
 1414303500000,
 12625139.65
]
],
 "label": "MID Kbps"
 }
],
 "version": "1.1"
}

Server

GET /api/1.1/deliveryserviceserver.json

Authentication Required: Yes

Request Query Parameters

	Name

	Required

	Description

	page

	no

	The page number for use in pagination.

	limit

	no

	For use in limiting the result set.

Response Properties

	Parameter

	Type

	Description

	lastUpdated

	array

	

	server

	string

	

	deliveryService

	string

	

Response Example

{
 "page": 2,
 "orderby": "deliveryservice",
 "response": [
 {
 "lastUpdated": "2014-09-26 17:53:43",
 "server": "20",
 "deliveryService": "1"
 },
 {
 "lastUpdated": "2014-09-26 17:53:44",
 "server": "21",
 "deliveryService": "1"
 },
],
 "version": "1.1",
 "limit": 2
}

SSL Keys

GET /api/1.1/deliveryservices/xmlId/:xmlid/sslkeys.json

Authentication Required: Yes

Role Required: Admin

Request Route Parameters

	Name

	Required

	Description

	xmlId

	yes

	xml_id of the desired delivery service

Request Query Parameters

	Name

	Required

	Description

	version

	no

	The version number to retrieve

Response Properties

	Parameter

	Type

	Description

	crt

	string

	base64 encoded crt file for delivery service

	csr

	string

	base64 encoded csr file for delivery service

	key

	string

	base64 encoded private key file for delivery service

	businessUnit

	string

	The business unit entered by the user when generating certs. Field is optional and if not provided by the user will not be in response

	city

	string

	The city entered by the user when generating certs. Field is optional and if not provided by the user will not be in response

	organization

	string

	The organization entered by the user when generating certs. Field is optional and if not provided by the user will not be in response

	hostname

	string

	The hostname entered by the user when generating certs. Field is optional and if not provided by the user will not be in response

	country

	string

	The country entered by the user when generating certs. Field is optional and if not provided by the user will not be in response

	state

	string

	The state entered by the user when generating certs. Field is optional and if not provided by the user will not be in response

	version

	string

	The version of the certificate record in Riak

Response Example

{
 "version": "1.1",
 "response": {
 "certificate": {
 "crt": "crt",
 "key": "key",
 "csr": "csr"
 },
 "businessUnit": "CDN_Eng",
 "city": "Denver",
 "organization": "KableTown",
 "hostname": "foober.com",
 "country": "US",
 "state": "Colorado",
 "version": "1"
 }
}

GET /api/1.1/deliveryservices/hostname/:hostname/sslkeys.json

Authentication Required: Yes

Role Required: Admin

Request Route Parameters

	Name

	Required

	Description

	hostname

	yes

	pristine hostname of the desired delivery service

Request Query Parameters

	Name

	Required

	Description

	version

	no

	The version number to retrieve

Response Properties

	Parameter

	Type

	Description

	crt

	string

	base64 encoded crt file for delivery service

	csr

	string

	base64 encoded csr file for delivery service

	key

	string

	base64 encoded private key file for delivery service

	businessUnit

	string

	The business unit entered by the user when generating certs. Field is optional and if not provided by the user will not be in response

	city

	string

	The city entered by the user when generating certs. Field is optional and if not provided by the user will not be in response

	organization

	string

	The organization entered by the user when generating certs. Field is optional and if not provided by the user will not be in response

	hostname

	string

	The hostname entered by the user when generating certs. Field is optional and if not provided by the user will not be in response

	country

	string

	The country entered by the user when generating certs. Field is optional and if not provided by the user will not be in response

	state

	string

	The state entered by the user when generating certs. Field is optional and if not provided by the user will not be in response

	version

	string

	The version of the certificate record in Riak

Response Example

{
 "version": "1.1",
 "response": {
 "certificate": {
 "crt": "crt",
 "key": "key",
 "csr": "csr"
 },
 "businessUnit": "CDN_Eng",
 "city": "Denver",
 "organization": "KableTown",
 "hostname": "foober.com",
 "country": "US",
 "state": "Colorado",
 "version": "1"
 }
}

GET /api/1.1/deliveryservices/xmlId/:xmlid/sslkeys/delete.json

Authentication Required: Yes

Role Required: Admin

Request Route Parameters

	Name

	Required

	Description

	xmlId

	yes

	xml_id of the desired delivery service

Request Query Parameters

	Name

	Required

	Description

	version

	no

	The version number to retrieve

Response Properties

	Parameter

	Type

	Description

	response

	string

	success response

Response Example

{
 "version": "1.1",
 "response": "Successfully deleted ssl keys for <xml_id>"
}

POST /api/1.1/deliveryservices/sslkeys/generate

Generates SSL crt, csr, and private key for a delivery service

Authentication Required: Yes
Role Required: Admin

Response Content Type: application/json

Request Properties

	Parameter

	Type

	Description

	key

	string

	xml_id of the delivery service

	version

	string

	version of the keys being generated

	hostname

	string

	the pristine hostname of the delivery service

	country

	string

	

	state

	string

	

	city

	string

	

	org

	string

	

	unit

	boolean

	

Request Example

{
 "key": "ds-01",
 "businessUnit": "CDN Engineering",
 "version": "3",
 "hostname": "tr.ds-01.ott.kabletown.com",
 "certificate": {
 "key": "some_key",
 "csr": "some_csr",
 "crt": "some_crt"
 },
 "country": "US",
 "organization": "Kabletown",
 "city": "Denver",
 "state": "Colorado"
}

Response Properties

	Parameter

	Type

	Description

	response

	string

	response string

	version

	string

	API version

Response Example

{
 "version": "1.1",
 "response": "Successfully created ssl keys for ds-01"
}

POST /api/1.1/deliveryservices/sslkeys/add

Allows user to add SSL crt, csr, and private key for a delivery service

Authentication Required: Yes
Role Required: Admin

Request Properties

	Parameter

	Type

	Description

	key

	string

	xml_id of the delivery service

	version

	string

	version of the keys being generated

	csr

	string

	

	crt

	string

	

	key

	string

	

Request Example

{
 "key": "ds-01",
 "version": "1",
 "certificate": {
 "key": "some_key",
 "csr": "some_csr",
 "crt": "some_crt"
 }
}

Response Properties

	Parameter

	Type

	Description

	response

	string

	response string

	version

	string

	API version

Response Example

{
 "version": "1.1",
 "response": "Successfully added ssl keys for ds-01"
}

hwinfo

GET /api/1.1/hwinfo.json

Authentication Required: Yes

Response Properties

	Parameter

	Type

	Description

	serverId

	string

	Local unique identifier for this specific server’s hardware info

	serverHostName

	string

	Hostname for this specific server’s hardware info

	lastUpdated

	string

	The Time and Date for the last update for this server.

	val

	string

	Freeform value used to track anything about a server’s hardware info

	description

	string

	Freeform description for this specific server’s hardware info

Response Example

{
 "response": [
 {
 "serverId": "odol-atsmid-cen-09",
 "lastUpdated": "2014-05-27 09:06:02",
 "val": "D1S4",
 "description": "Physical Disk 0:1:0"
 },
 {
 "serverId": "odol-atsmid-cen-09",
 "lastUpdated": "2014-05-27 09:06:02",
 "val": "D1S4",
 "description": "Physical Disk 0:1:1"
 }
],
 "version": "1.1"
}

Parameter

GET /api/1.1/parameters.json

Authentication Required: Yes

Return Values

	Parameter

	Type

	Description

	last_updated

	string

	The Time / Date this server entry was last updated

	value

	string

	The parameter value

	name

	string

	The parameter name

	config_file

	string

	The parameter config_file

Response Example

{
 "response": [
 {
 "last_updated": "2012-09-17 21:41:22",
 "value": "foo.bar.net",
 "name": "domain_name",
 "config_file": "FooConfig.xml"
 },
 {
 "last_updated": "2012-09-17 21:41:22",
 "value": "0,1,2,3,4,5,6",
 "name": "Drive_Letters",
 "config_file": "storage.config"
 },
 {
 "last_updated": "2012-09-17 21:41:22",
 "value": "STRING __HOSTNAME__",
 "name": "CONFIG proxy.config.proxy_name",
 "config_file": "records.config"
 }
],
 "version": "1.1"
}

GET /api/1.1/parameters/profile/:profile_name.json

Authentication Required: Yes

Request Route Parameters

	Name

	Required

	Description

	profile_name

	yes

	

Return Values

	Parameter

	Type

	Description

	last_updated

	string

	The Time / Date this server entry was last updated

	value

	string

	The parameter value

	name

	string

	The parameter name

	config_file

	string

	The parameter config_file

Response Example

{
 "response": [
 {
 "last_updated": "2012-09-17 21:41:22",
 "value": "foo.bar.net",
 "name": "domain_name",
 "config_file": "FooConfig.xml"
 },
 {
 "last_updated": "2012-09-17 21:41:22",
 "value": "0,1,2,3,4,5,6",
 "name": "Drive_Letters",
 "config_file": "storage.config"
 },
 {
 "last_updated": "2012-09-17 21:41:22",
 "value": "STRING __HOSTNAME__",
 "name": "CONFIG proxy.config.proxy_name",
 "config_file": "records.config"
 }
],
 "version": "1.1"
}

Physical Location

GET /api/1.1/phys_locations.json

Authentication Required: Yes

Response Properties

	Parameter

	Type

	Description

	region

	string

	

	poc

	string

	

	name

	string

	

	comments

	string

	

	phone

	string

	

	state

	string

	

	email

	string

	

	city

	string

	

	zip

	string

	

	id

	string

	

	address

	string

	

	shortName

	string

	

Response Example

{
 "response": [
 {
 "region": "Mile High",
 "poc": "Jane Doe",
 "name": "Albuquerque",
 "comments": "Albuquerque",
 "phone": "(123) 555-1111",
 "state": "NM",
 "email": "jane.doe@email.com",
 "city": "Albuquerque",
 "zip": "87107",
 "id": "2",
 "address": "123 East 3rd St",
 "shortName": "Albuquerque"
 },
 {
 "region": "Chicago",
 "poc": "John Doe",
 "name": "Chicago",
 "comments": "",
 "phone": "(321) 555-1111",
 "state": "IL",
 "email": "john.doe@email.com",
 "city": "Chicago",
 "zip": "60636",
 "id": "3",
 "address": "123 East 4th Street",
 "shortName": "chicago"
 }
],
 "version": "1.1"
}

GET /api/1.1/phys_locations/trimmed.json

Authentication Required: Yes

Response Messages

Response Properties

	Parameter

	Type

	Description

	name

	array

	

Response Example

{
 "response": [
 {
 "name": "Albuquerque"
 },
 {
 "name": "Ashburn"
 }
],
 "version": "1.1"
}

Profiles

GET /api/1.1/profiles

Authentication Required: Yes

Response Properties

	Parameter

	Type

	Description

	lastUpdated

	array

	The Time / Date this server entry was last updated

	name

	string

	The name for the profile

	id

	string

	Primary key

	description

	string

	The description for the profile

Response Example

TBD

GET /api/1.1/profiles/trimmed.json

Authentication Required: Yes

Response Properties

	Parameter

	Type

	Description

	alerts

	array

	

	>level

	string

	

	>text

	string

	

	version

	string

	

Response Example

TBD

Redis

Note

The redis documentation needs a thorough review!

GET /api/1.1/traffic_monitor/stats.json

Authentication Required: Yes

Response Content Type: application/json

Response Messages

HTTP Status Code: 200
Reason: Success

Response Properties

	Parameter

	Type

	Description

	aaData

	array

	

Response Example

{
 "aaData": [
 [
 "0",
 "ALL",
 "ALL",
 "ALL",
 "true",
 "ALL",
 "142035",
 "172365661.85"
],
 [
 1,
 "EDGE1_TOP_421_PSPP",
 "odol-atsec-atl-03",
 "us-ga-atlanta",
 "1",
 "REPORTED",
 "596",
 "923510.04",
 "69.241.82.126"
]
],
 "version": "1.1"
}

GET /api/1.1/redis/stats.json

Authentication Required: Yes

Response Content Type: application/json

Response Messages

HTTP Status Code: 200
Reason: Success

Response Properties

	Parameter

	Type

	Description

	number

	array

	

	what

	string

	

	which

	string

	

	interval

	string

	

	elapsed

	string

	

	end

	string

	

	start

	string

	

Response Example

{
 "number": -1,
 "what": null,
 "which": null,
 "interval": " 10 seconds ",
 "elapsed": "0.11271 (0.112065) ",
 "end": "Thu Jan 1 00:00:00 1970",
 "start": "Thu Jan 1 00:00:00 1970"
}

GET /api/1.1/redis/info/:host_name.json

Authentication Required: Yes

Request Route Parameters

	Parameter

	Type

	Description

	host_name

	string

	

Request Example

Response Content Type: application/json

Response Messages

HTTP Status Code: 200
Reason: Success

Response Properties

	Parameter

	Type

	Description

	Server

	hash

	

	>redis_build_id

	string

	

	>config_file

	string

	

	>uptime_in_seconds

	string

	

	>hz

	string

	

	>os

	string

	

	>redis_git_sha1

	string

	

	>redis_version

	string

	

	>tcp_port

	string

	

	>redis_git_dirty

	string

	

	>redis_mode

	string

	

	>run_id

	string

	

	>uptime_in_days

	string

	

	>gcc_version

	string

	

	>arch_bits

	string

	

	>lru_clock

	string

	

	>multiplexing_api

	string

	

	Keyspace

	string

	

	>db0

	string

	

	slowlog

	array

	

	Persistence

	hash

	

	>rdb_bgsave_in_progress

	string

	

	>loading

	string

	

	>rdb_current_bgsave_time_sec

	string

	

	>aof_enabled

	string

	

	>rdb_last_bgsave_time_sec

	string

	

	>aof_last_rewrite_time_sec

	string

	

	>aof_last_write_status

	string

	

	>rdb_last_bgsave_status

	string

	

	>aof_last_bgrewrite_status

	string

	

	>aof_current_rewrite_time_sec

	string

	

	>aof_rewrite_scheduled

	string

	

	>aof_rewrite_in_progress

	string

	

	>rdb_last_save_time

	string

	

	>rdb_changes_since_last_save

	string

	

	slowlen

	int

	

	CPU

	hash

	

	>used_cpu_user

	string

	

	>used_cpu_sys

	string

	

	>used_cpu_user_children

	string

	

	>used_cpu_sys_children

	string

	

	Memory

	string

	

	>used_memory_lua

	string

	

	>mem_allocator

	string

	

	>used_memory_human

	string

	

	>used_memory_peak_human

	string

	

	>used_memory_peak

	string

	

	>used_memory_rss

	string

	

	>mem_fragmentation_ratio

	string

	

	>used_memory

	string

	

	Replication

	hash

	

	>repl_backlog_first_byte_offset

	string

	

	>repl_backlog_active

	string

	

	>repl_backlog_histlen

	string

	

	>repl_backlog_size

	string

	

	>role

	string

	

	>master_repl_offset

	string

	

	>connected_slaves

	string

	

	Clients

	hash

	

	>client_biggest_input_buf

	string

	

	>client_longest_output_list

	string

	

	>blocked_clients

	string

	

	>connected_clients

	string

	

	Stats

	hash

	

	>latest_fork_usec

	string

	

	>rejected_connections

	string

	

	>sync_partial_ok

	string

	

	>pubsub_channels

	string

	

	>instantaneous_ops_per_sec

	string

	

	>total_connections_received

	string

	

	>pubsub_patterns

	string

	

	>sync_full

	string

	

	>keyspace_hits

	string

	

	>keyspace_misses

	string

	

	>total_commands_processed

	string

	

	>expired_keys

	string

	

	>sync_partial_err

	string

	

Response Example

{
 "Server": {
 "redis_build_id": "606641459177bc09",
 "config_file": "\/etc\/redis\/redis.conf",
 "uptime_in_seconds": "1113787",
 "hz": "10",
 "os": "Linux 2.6.32-220.el6.x86_64 x86_64",
 "redis_git_sha1": "00000000",
 "redis_version": "2.8.15",
 "process_id": "14607",
 "tcp_port": "6379",
 "redis_git_dirty": "0",
 "redis_mode": "standalone",
 "run_id": "43c5d003453b96e38ad3eae54026d8e1b078a7fd",
 "uptime_in_days": "12",
 "gcc_version": "4.4.6",
 "arch_bits": "64",
 "lru_clock": "16050046",
 "multiplexing_api": "epoll"
 },
 "Keyspace": {
 "db0": "keys=26319,expires=0,avg_ttl=0"
 },
 "slowlog": [
 [
 "32656",
 "1425336191",
 "18539",
 [
 "keys",
 "*"
]
]
],
 "Persistence": {
 "rdb_bgsave_in_progress": "0",
 "loading": "0",
 "rdb_current_bgsave_time_sec": "-1",
 "aof_enabled": "0",
 "rdb_last_bgsave_time_sec": "-1",
 "aof_last_rewrite_time_sec": "-1",
 "aof_last_write_status": "ok",
 "rdb_last_bgsave_status": "ok",
 "aof_last_bgrewrite_status": "ok",
 "aof_current_rewrite_time_sec": "-1",
 "aof_rewrite_scheduled": "0",
 "aof_rewrite_in_progress": "0",
 "rdb_last_save_time": "1424222403",
 "rdb_changes_since_last_save": "2595831724"
 },
 "slowlen": 128,
 "CPU": {
 "used_cpu_user": "45252.98",
 "used_cpu_sys": "154718.84",
 "used_cpu_user_children": "0.00",
 "used_cpu_sys_children": "0.00"
 },
 "Memory": {
 "used_memory_lua": "33792",
 "mem_allocator": "jemalloc-3.6.0",
 "used_memory_human": "5.25G",
 "used_memory_peak_human": "8.08G",
 "used_memory_peak": "8675798632",
 "used_memory_rss": "8870088704",
 "mem_fragmentation_ratio": "1.57",
 "used_memory": "5633381640"
 },
 "Replication": {
 "repl_backlog_first_byte_offset": "0",
 "repl_backlog_active": "0",
 "repl_backlog_histlen": "0",
 "repl_backlog_size": "1048576",
 "role": "master",
 "master_repl_offset": "0",
 "connected_slaves": "0"
 },
 "Clients": {
 "client_biggest_input_buf": "0",
 "client_longest_output_list": "0",
 "blocked_clients": "0",
 "connected_clients": "16"
 },
 "Stats": {
 "latest_fork_usec": "0",
 "rejected_connections": "0",
 "sync_partial_ok": "0",
 "pubsub_channels": "0",
 "instantaneous_ops_per_sec": "2238",
 "total_connections_received": "2502657",
 "evicted_keys": "0",
 "pubsub_patterns": "0",
 "sync_full": "0",
 "keyspace_hits": "49388626",
 "keyspace_misses": "780",
 "total_commands_processed": "2645272238",
 "expired_keys": "0",
 "sync_partial_err": "0"
 }
}

GET /api/1.1/redis/match/#match/start_date/:start_date/end_date/:end_date/interval/:interval.json

Authentication Required:

Request Route Parameters

	Parameter

	Type

	Description

	start_date

	string

	

	end_date

	string

	

	interval

	string

	

Request Example

Response Content Type: application/json

Response Messages

HTTP Status Code: 200
Reason: Success

Response Properties

	Parameter

	Type

	Description

	alerts

	array

	

	>level

	string

	

	>text

	string

	

	version

	string

	

Response Example

Regions

GET /api/1.1/regions.json

Authentication Required:

Response Content Type: application/json

Response Properties

	Parameter

	Type

	Description

	name

	string

	

	id

	string

	

Response Example

{
 "response": [
 {
 "name": "Atlanta",
 "id": "6"
 },
 {
 "name": "Beltway",
 "id": "1"
 }
],
 "version": "1.1"
}

Roles

GET /api/1.1/roles.json

Authentication Required: Yes

Response Properties

	Parameter

	Type

	Description

	name

	string

	

	id

	string

	

	privLevel

	string

	

	description

	string

	

Response Example

{
 "response": [
 {
 "name": "read-only",
 "id": "2",
 "privLevel": "10",
 "description": "read-only user"
 }
],
 "version": "1.1"
}

Server

GET /api/1.1/servers.json

Retrieves properties of CDN servers.

Authentication Required: Yes

Response Properties

	Parameter

	Type

	Description

	cachegroup

	string

	The cache group name (see Cache Group).

	domainName

	string

	The domain name part of the FQDN of the cache.

	hostName

	string

	The host name part of the cache.

	id

	string

	The server id (database row number).

	iloIpAddress

	string

	The IPv4 address of the lights-out-management port.

	iloIpGateway

	string

	The IPv4 gateway address of the lights-out-management port.

	iloIpNetmask

	string

	The IPv4 netmask of the lights-out-management port.

	iloPassword

	string

	The password of the of the lights-out-management user (displays as ** unless you are an ‘admin’ user).

	iloUsername

	string

	The user name for lights-out-management.

	interfaceMtu

	string

	The Maximum Transmission Unit (MTU) to configure for interfaceName.

	interfaceName

	string

	The network interface name used for serving traffic.

	ip6Address

	string

	The IPv6 address/netmask for interfaceName.

	ip6Gateway

	string

	The IPv6 gateway for interfaceName.

	ipAddress

	string

	The IPv4 address for interfaceName.

	ipGateway

	string

	The IPv4 gateway for interfaceName.

	ipNetmask

	string

	The IPv4 netmask for interfaceName.

	lastUpdated

	string

	The Time and Date for the last update for this server.

	mgmtIpAddress

	string

	The IPv4 address of the management port (optional).

	mgmtIpGateway

	string

	The IPv4 gateway of the management port (optional).

	mgmtIpNetmask

	string

	The IPv4 netmask of the management port (optional).

	physLocation

	string

	The physical location name (see Physical Location).

	profile

	string

	The assigned profile name (see Profiles).

	rack

	string

	A string indicating rack location.

	routerHostName

	string

	The human readable name of the router.

	routerPortName

	string

	The human readable name of the router port.

	status

	string

	The Status string (See Status).

	tcpPort

	string

	The default TCP port on which the main application listens (80 for a cache in most cases).

	type

	string

	The name of the type of this server (see Types).

	xmppId

	string

	Deprecated.

	xmppPasswd

	string

	Deprecated.

Response Example

{
 "response": [
 {
 "cachegroup": "us-il-chicago",
 "domainName": "chi.kabletown.net",
 "hostName": "atsec-chi-00",
 "id": "19",
 "iloIpAddress": "172.16.2.6",
 "iloIpGateway": "172.16.2.1",
 "iloIpNetmask": "255.255.255.0",
 "iloPassword": "********",
 "iloUsername": "",
 "interfaceMtu": "9000",
 "interfaceName": "bond0",
 "ip6Address": "2033:D0D0:3300::2:2/64",
 "ip6Gateway": "2033:D0D0:3300::2:1",
 "ipAddress": "10.10.2.2",
 "ipGateway": "10.10.2.1",
 "ipNetmask": "255.255.255.0",
 "lastUpdated": "2015-03-08 15:57:32",
 "mgmtIpAddress": "",
 "mgmtIpGateway": "",
 "mgmtIpNetmask": "",
 "physLocation": "plocation-chi-1",
 "profile": "EDGE1_CDN1_421_SSL",
 "rack": "RR 119.02",
 "routerHostName": "rtr-chi.kabletown.net",
 "routerPortName": "2",
 "status": "ONLINE",
 "tcpPort": "80",
 "type": "EDGE",
 "xmppId": "atsec-chi-00-dummyxmpp",
 "xmppPasswd": "**********"
 },
 {
 ... more server data
 }
]
 "version": "1.1"
 }

GET /api/1.1/servers/summary.json

Retrieves a count of CDN servers by type.

Authentication Required: Yes

Response Properties

	Parameter

	Type

	Description

	count

	int

	The number of servers of this type in this instance of Traffic Ops.

	type

	string

	The name of the type of the server count (see Types).

Response Example

{
 "response": [
 {
 "count": 4,
 "type": "CCR"
 },
 {
 "count": 55,
 "type": "EDGE"
 },
 {
 "type": "MID",
 "count": 18
 },
 {
 "count": 0,
 "type": "REDIS"
 },
 {
 "count": 4,
 "type": "RASCAL"
 }
 "version": "1.1",
}

GET /api/1.1/servers/hostname/:name/details.json

Retrieves the details of a server.

Authentication Required: Yes

Request Route Parameters

	Name

	Required

	Description

	name

	yes

	The host name part of the cache.

Response Properties

	Parameter

	Type

	Description

	cachegroup

	string

	The cache group name (see Cache Group).

	deliveryservices

	array

	Array of strings with the delivery service ids assigned (see Delivery Service).

	domainName

	string

	The domain name part of the FQDN of the cache.

	hardwareInfo

	hash

	Hwinfo struct (see hwinfo).

	hostName

	string

	The host name part of the cache.

	id

	string

	The server id (database row number).

	iloIpAddress

	string

	The IPv4 address of the lights-out-management port.

	iloIpGateway

	string

	The IPv4 gateway address of the lights-out-management port.

	iloIpNetmask

	string

	The IPv4 netmask of the lights-out-management port.

	iloPassword

	string

	The password of the of the lights-out-management user (displays as ** unless you are an ‘admin’ user).

	iloUsername

	string

	The user name for lights-out-management.

	interfaceMtu

	string

	The Maximum Transmission Unit (MTU) to configure for interfaceName.

	interfaceName

	string

	The network interface name used for serving traffic.

	ip6Address

	string

	The IPv6 address/netmask for interfaceName.

	ip6Gateway

	string

	The IPv6 gateway for interfaceName.

	ipAddress

	string

	The IPv4 address for interfaceName.

	ipGateway

	string

	The IPv4 gateway for interfaceName.

	ipNetmask

	string

	The IPv4 netmask for interfaceName.

	lastUpdated

	string

	The Time/Date of the last update for this server.

	mgmtIpAddress

	string

	The IPv4 address of the management port (optional).

	mgmtIpGateway

	string

	The IPv4 gateway of the management port (optional).

	mgmtIpNetmask

	string

	The IPv4 netmask of the management port (optional).

	physLocation

	string

	The physical location name (see Physical Location).

	profile

	string

	The assigned profile name (see Profiles).

	rack

	string

	A string indicating rack location.

	routerHostName

	string

	The human readable name of the router.

	routerPortName

	string

	The human readable name of the router port.

	status

	string

	The Status string (See Status).

	tcpPort

	string

	The default TCP port on which the main application listens (80 for a cache in most cases).

	type

	string

	The name of the type of this server (see Types).

	xmppId

	string

	Deprecated.

	xmppPasswd

	string

	Deprecated.

Response Example

{
 "response": {
 "cachegroup": "us-il-chicago",
 "deliveryservices": [
 "1",
 "2",
 "3",
 "4"
],
 "domainName": "chi.kabletown.net",
 "hardwareInfo": {
 "Physical Disk 0:1:3": "D1S2",
 "Physical Disk 0:1:2": "D1S2",
 "Physical Disk 0:1:15": "D1S2",
 "Power Supply.Slot.2": "04.07.15",
 "Physical Disk 0:1:24": "YS08",
 "Physical Disk 0:1:1": "D1S2",
 "Model": "PowerEdge R720xd",
 "Physical Disk 0:1:22": "D1S2",
 "Physical Disk 0:1:18": "D1S2",
 "Enterprise UEFI Diagnostics": "4217A5",
 "Lifecycle Controller": "1.0.8.42",
 "Physical Disk 0:1:8": "D1S2",
 "Manufacturer": "Dell Inc.",
 "Physical Disk 0:1:6": "D1S2",
 "SysMemTotalSize": "196608",
 "PopulatedDIMMSlots": "24",
 "Physical Disk 0:1:20": "D1S2",
 "Intel(R) Ethernet 10G 2P X520 Adapter": "13.5.7",
 "Physical Disk 0:1:14": "D1S2",
 "BACKPLANE FIRMWARE": "1.00",
 "Dell OS Drivers Pack, 7.0.0.29, A00": "7.0.0.29",
 "Integrated Dell Remote Access Controller": "1.57.57",
 "Physical Disk 0:1:5": "D1S2",
 "ServiceTag": "D6XPDV1",
 "PowerState": "2",
 "Physical Disk 0:1:23": "D1S2",
 "Physical Disk 0:1:25": "D903",
 "BIOS": "1.3.6",
 "Physical Disk 0:1:12": "D1S2",
 "System CPLD": "1.0.3",
 "Physical Disk 0:1:4": "D1S2",
 "Physical Disk 0:1:0": "D1S2",
 "Power Supply.Slot.1": "04.07.15",
 "PERC H710P Mini": "21.0.2-0001",
 "PowerCap": "689",
 "Physical Disk 0:1:16": "D1S2",
 "Physical Disk 0:1:10": "D1S2",
 "Physical Disk 0:1:11": "D1S2",
 "Lifecycle Controller 2": "1.0.8.42",
 "BP12G+EXP 0:1": "1.07",
 "Physical Disk 0:1:9": "D1S2",
 "Physical Disk 0:1:17": "D1S2",
 "Broadcom Gigabit Ethernet BCM5720": "7.2.20",
 "Physical Disk 0:1:21": "D1S2",
 "Physical Disk 0:1:13": "D1S2",
 "Physical Disk 0:1:7": "D1S2",
 "Physical Disk 0:1:19": "D1S2"
 },
 "hostName": "atsec-chi-00",
 "id": "19",
 "iloIpAddress": "172.16.2.6",
 "iloIpGateway": "172.16.2.1",
 "iloIpNetmask": "255.255.255.0",
 "iloPassword": "********",
 "iloUsername": "",
 "interfaceMtu": "9000",
 "interfaceName": "bond0",
 "ip6Address": "2033:D0D0:3300::2:2/64",
 "ip6Gateway": "2033:D0D0:3300::2:1",
 "ipAddress": "10.10.2.2",
 "ipGateway": "10.10.2.1",
 "ipNetmask": "255.255.255.0",
 "mgmtIpAddress": "",
 "mgmtIpGateway": "",
 "mgmtIpNetmask": "",
 "physLocation": "plocation-chi-1",
 "profile": "EDGE1_CDN1_421_SSL",
 "rack": "RR 119.02",
 "routerHostName": "rtr-chi.kabletown.net",
 "routerPortName": "2",
 "status": "ONLINE",
 "tcpPort": "80",
 "type": "EDGE",
 "xmppId": "atsec-chi-00-dummyxmpp",
 "xmppPasswd": "X"

 }
 "version": "1.1",

}

POST /api/1.1/servercheck

Post a server check result to the serverchecks table.

Authentication Required: Yes

Request Route Parameters

	Name

	Required

	Description

	id

	yes

	

	host_name

	yes

	

	servercheck_short_name

	yes

	

	value

	yes

	

Request Example

{
 "id": "",
 "host_name": "",
 "servercheck_short_name": "",
 "value": ""
}

Response Content Type: application/json

Response Properties

	Parameter

	Type

	Description

	alerts

	array

	A collection of alert messages.

	>level

	string

	Success, info, warning or error.

	>text

	string

	Alert message.

	version

	string

	

Response Example

Response Example:

{
 "alerts":
 [
 {
 "level": "success",
 "text": "Server Check was successfully updated."
 }
],
 "version": "1.1"
}

Static DNS Entries

GET /api/1.1/staticdnsentries.json

Authentication Required: Yes

Response Properties

	Parameter

	Type

	Description

	TBD

	array

	

Response Example

TBD

Status

GET /api/1.1/statuses.json

Retrieves a list of the server status codes available. May be useful when the status is retrieved from other APIs as a number and not a string.

Authentication Required: Yes

Response Properties

	Parameter

	Type

	Description

	lastUpdated

	string

	The Time / Date this server entry was last updated

	name

	string

	The string equivalent of the status

	id

	string

	The id with which Traffic Ops stores this status, and references it internally

	description

	string

	A short description of the status

Response Example

 {
 "response": [
 {
 "description": "Temporary down. Edge: XMPP client will send status OFFLINE to CCR, otherwise similar to REPORTED. Mid: Server will not be included in parent.config files for its edge caches",
 "id": "4",
 "name": "ADMIN_DOWN",
 "lastUpdated": "2013-02-13 16:34:29"
 },
 {
 "lastUpdated": "2013-02-13 16:34:29",
 "name": "CCR_IGNORE",
 "id": "5",
 "description": "Edge: 12M will not include caches in this state in CCR config files. Mid: N\/A for now"
 },
 {
 "description": "Edge: Puts server in CCR config file in this state, but CCR will never route traffic to it. Mid: Server will not be included in parent.config files for its edge caches",
 "id": "1",
 "lastUpdated": "2013-02-13 16:34:29",
 "name": "OFFLINE"
 },
 {
 "id": "2",
 "description": "Edge: Puts server in CCR config file in this state, and CCR will always route traffic to it. Mid: Server will be included in parent.config files for its edges",
 "lastUpdated": "2013-02-13 16:34:29",
 "name": "ONLINE"
 },
 {
 "id": "3",
 "description": "Edge: Puts server in CCR config file in this state, and CCR will adhere to the health protocol. Mid: N\/A for now",
 "name": "REPORTED",
 "lastUpdated": "2013-02-13 16:34:29"
 }
],
 "version": "1.1"
}

System

GET /api/1.1/system/info.json

Authentication Required: Yes

Response Properties

	Key

	Type

	Description

	parameters

	hash

	This is a hash with the parameter names that describe the Traffic Ops installation as keys.
These are all the parameters in the GLOBAL profile.

	>tm.toolname

	string

	The name of the Traffic Ops tool. Usually “Traffic Ops”. Used in the About screen and in the comments headers of the files generated
(# DO NOT EDIT - Generated for atsec-lax-04 by Traffic Ops (https://traffops.kabletown.net/) on Fri Mar 6 05:15:15 UTC 2015).

	>tm.instance_name

	string

	The name of the Traffic Ops instance. Can be used when multiple instances are active. Visible in the About page.

	>traffic_rtr_fwd_proxy

	string

	When collecting stats from Traffic Router, Traffic Ops uses this forward proxy to pull the stats through.
This can be any of the MID tier caches, or a forward cache specifically deployed for this purpose. Setting
this variable can significantly lighten the load on the Traffic Router stats system and it is recommended to
set this parameter on a production system.

	>tm.url

	string

	The URL for this Traffic Ops instance. Used in the About screen and in the comments headers of the files generated
(# DO NOT EDIT - Generated for atsec-lax-04 by Traffic Ops (https://traffops.kabletown.net/) on Fri Mar 6 05:15:15 UTC 2015).

	>traffic_mon_fwd_proxy

	string

	When collecting stats from Traffic Monitor, Traffic Ops uses this forward proxy to pull the stats through.
This can be any of the MID tier caches, or a forward cache specifically deployed for this purpose. Setting
this variable can significantly lighten the load on the Traffic Monitor system and it is recommended to
set this parameter on a production system.

	>tm.logourl

	string

	This is the URL of the logo for Traffic Ops and can be relative if the logo is under traffic_ops/app/public.

	>tm.infourl

	string

	This is the “for more information go here” URL, which is visible in the About page.

Response Example

{
 "response": {
 "parameters": {
 "tm.toolname": "Traffic Ops",
 "tm.infourl": "http:\/\/staging-03.cdnlab.kabletown.net\/tm\/info",
 "traffic_mon_fwd_proxy": "http:\/\/proxy.kabletown.net:81",
 "traffic_rtr_fwd_proxy": "http:\/\/proxy.kabletown.net:81",
 "tm.logourl": "\/images\/tc_logo.png",
 "tm.url": "https:\/\/tm.kabletown.net\/",
 "tm.instance_name": "Kabletown CDN"
 }
 },
 "version": "1.1"
}

TO Extensions

GET /api/1.1/to_extensions.json

Retrieves the list of extensions.

Authentication Required: Yes

Response Content Type: application/json

Return Values

	Parameter

	Type

	Description

	script_file

	string

	

	version

	string

	

	name

	string

	

	description

	string

	

	info_url

	string

	

	additional_config_json

	string

	

	isactive

	string

	

	id

	string

	

	type

	string

	

	servercheck_short_name

	string

	

Response Example

{
 “response”: [
 {
 script_file: "ping",
 version: "1.0.0",
 name: "ILO_PING",
 description: null,
 info_url: "http://foo.com/bar.html",
 additional_config_json: "{ "path": "/api/1.1/servers.json", "match": { "type": "EDGE"}, "select": "ilo_ip_address", "cron": "9 * * * *" }",
 isactive: "1",
 id: "1",
 type: "CHECK_EXTENSION_BOOL",
 servercheck_short_name: "ILO"
 },
 {
 script_file: "ping",
 version: "1.0.0",
 name: "10G_PING",
 description: null,
 info_url: "http://foo.com/bar.html",
 additional_config_json: "{ "path": "/api/1.1/servers.json", "match": { "type": "EDGE"}, "select": "ip_address", "cron": "18 * * * *" }",
 isactive: "1",
 id: "2",
 type: "CHECK_EXTENSION_BOOL",
 servercheck_short_name: "10G"
 }
],
 “version”: "1.1"
}

POST /api/1.1/to_extensions

Creates a Traffic Ops extension.

Authentication Required: Yes

Request Parameters

	Parameter

	Type

	Description

	name

	string

	

	version

	string

	

	info_url

	string

	

	script_file

	string

	

	isactive

	string

	

	additional_config_json

	string

	

	description

	string

	

	servercheck_short_name

	string

	

	type

	string

	

Request Example

{
 "name": "ILO_PING",
 "version": "1.0.0",
 "info_url": "http://foo.com/bar.html",
 "script_file": "ping",
 "isactive": "1",
 "additional_config_json": "{ "path": "/api/1.1/servers.json", "match": { "type": "EDGE"}",
 "description": null,
 "servercheck_short_name": "ILO"
 "type": "CHECK_EXTENSION_BOOL",
}

Response Content Type: application/json

Response Properties

	Parameter

	Type

	Description

	alerts

	array

	A collection of alert messages.

	>level

	string

	Success, info, warning or error.

	>text

	string

	Alert message.

Response Example

{
 "alerts": [
 {
 "level": "success",
 "text": "Check Extension loaded."
 }
],
 "version": "1.1"
}

POST /api/1.1/to_extensions/:id/delete

Deletes a Traffic Ops extension.

Authentication Required: Yes

Request Route Parameters

	Name

	Required

	Description

	id

	yes

	TO extension id

Response Content Type: application/json

Response Properties

	Parameter

	Type

	Description

	alerts

	array

	A collection of alert messages.

	>level

	string

	Success, info, warning or error.

	>text

	string

	Alert message.

Response Example

 {
"alerts": [
 {
 "level": "success",
 "text": "Extension deleted."
 }
],
"version": "1.1"
 }

Types

GET /api/1.1/types.json

Authentication Required: Yes

Response Properties

	Parameter

	Type

	Description

	lastUpdated

	string

	

	useInTable

	string

	

	name

	string

	

	id

	string

	

	description

	string

	

Response Example

{
 "response": [
 {
 "lastUpdated": "2013-10-23 15:28:31",
 "useInTable": "staticdnsentry",
 "name": "AAAA_RECORD",
 "id": "22",
 "description": "Static DNS AAAA entry"
 }
],
 "version": "1.1"
}

GET /api/1.1/types/trimmed.json

Authentication Required: Yes

Response Content Type: application/json

Response Properties

	Parameter

	Type

	Description

	name

	string

	

Response Example

{
 "response": [
 {
 "name": "AAAA_RECORD"
 },
 {
 "name": "ACTIVE_DIRECTORY"
 },
 {
 "name": "A_RECORD"
 },
 {
 "name": "CCR"
 }
],
 "version": "1.1"
}

Users

GET /api/1.1/users.json

Retrieves all users.

Authentication Required: Yes

Response Properties

	Parameter

	Type

	Description

	email

	string

	

	city

	string

	

	id

	hash

	

	phoneNumber

	string

	

	company

	string

	

	country

	string

	

	fullName

	string

	

	localUser

	string

	

	uid

	string

	

	username

	string

	

	rolename

	string

	

	newUser

	string

	

	addressLine2

	string

	

	role

	string

	

	addressLine1

	string

	

	postalCode

	string

	

	gid

	string

	

Response Example

[
 {
 "email": "email@email.com",
 "city": "",
 "id": "54",
 "phoneNumber": "",
 "company": "",
 "country": "",
 "fullName": "Bob Simpson",
 "localUser": false,
 "uid": "0",
 "stateOrProvince": "",
 "username": "bsimpson",
 "rolename": "portal",
 "newUser": true,
 "addressLine2": "",
 "role": "6",
 "addressLine1": "",
 "postalCode": "",
 "gid": "0"
 }
]

GET /api/1.1/user/current.json

Retrieves the profile for the authenticated user.

Authentication Required: Yes

Request Properties

	Parameter

	Type

	Description

	email

	string

	

	city

	string

	

	id

	string

	

	phoneNumber

	string

	

	company

	string

	

	country

	string

	

	fullName

	string

	

	localUser

	boolean

	

	uid

	string

	

	stateOrProvince

	string

	

	username

	string

	

	newUser

	boolean

	

	addressLine2

	string

	

	role

	string

	

	addressLine1

	string

	

	gid

	string

	

	postalCode

	string

	

Response Example

{
 “response”: {
 “email”: "email@email.com",
 “city”: "",
 “id”: "50",
 “phoneNumber”: "",
 “company”: "",
 “country”: "",
 “fullName”: "Tom Callahan",
 “localUser”: true,
 “uid”: "0",
 “stateOrProvince”: "",
 “username”: "tommyboy",
 “newUser”: false,
 “addressLine2”: "",
 “role”: "6",
 “addressLine1”: "",
 “gid”: "0",
 “postalCode”: ""
 },
 “version”: "1.1"
}

POST /api/1.1/user/current/update

Updates the date for the authenticated user.

Authentication Required: Yes

Request Properties

	Parameter

	Type

	Description

	email

	string

	

	city

	string

	

	id

	string

	

	phoneNumber

	string

	

	company

	string

	

	country

	string

	

	fullName

	string

	

	localUser

	boolean

	

	uid

	string

	

	stateOrProvince

	string

	

	username

	string

	

	newUser

	boolean

	

	addressLine2

	string

	

	role

	string

	

	addressLine1

	string

	

	gid

	string

	

	postalCode

	string

	

Request Example

{
 "user": {
 "email": "",
 "city": "",
 "id": "",
 "phoneNumber": "",
 "company": "",
 "country": "",
 "fullName": "",
 "localUser": true,
 "uid": "0",
 "stateOrProvince": "",
 "username": "tommyboy",
 "newUser": false,
 "addressLine2": "",
 "role": "6",
 "addressLine1": "",
 "gid": "0",
 "postalCode": ""
 }
}

Response Properties

	Parameter

	Type

	Description

	alerts

	array

	A collection of alert messages.

	>level

	string

	Success, info, warning or error.

	>text

	string

	Alert message.

	version

	string

	

Response Example

{
 "alerts": [
 {
 "level": "success",
 "text": "UserProfile was successfully updated."
 }
],
 "version": "1.1"
}

GET /api/1.1/user/current/jobs.json

Retrieves user purge jobs.

Authentication Required: Yes

Response Properties

	Parameter

	Type

	Description

	keyword

	string

	

	objectName

	string

	

	assetUrl

	string

	

	assetType

	string

	

	status

	string

	

	dsId

	string

	

	dsXmlId

	string

	

	username

	boolean

	

	parameters

	string

	

	enteredTime

	string

	

	objectType

	string

	

	agent

	string

	

	id

	string

	

	startTime

	string

	

	version

	string

	

Response Example

{
 "response": [
 {
 "id": "1",
 "keyword": "PURGE",
 "objectName": null,
 "assetUrl": "",
 "assetType": "file",
 "status": "PENDING",
 "dsId": "73",
 "dsXmlId": "cim-jitp",
 "username": "peewee",
 "parameters": "TTL:56h",
 "enteredTime": "2015-01-21 18:00:16",
 "objectType": null,
 "agent": "",
 "startTime": "2015-01-21 10:45:38"
 }
],
 "version": "1.1"
}

POST/api/1.1/user/current/jobs

Creates a purge job.

Authentication Required: Yes

Request Properties

	Parameter

	Type

	Description

	dsId

	string

	

	dsXmlId

	string

	

	regex

	string

	

	startTime

	string

	

	ttl

	int

	

Request Example

{
 "dsId": "73",
 "dsXmlId": "cim-jitp",
 "regex": "/path/to/content.jpg",
 "startTime": "2015-01-27 11:08:37",
 "ttl": 54
}

Response Content Type: application/json

Response Properties

	Parameter

	Type

	Description

	alerts

	array

	A collection of alert messages.

	>level

	string

	Success, info, warning or error.

	>text

	string

	Alert message.

	version

	string

	

Response Example

{
 “alerts”:
 [
 {
 “level”: "success",
 “text”: "Successfully created purge job for: ."
 }
],
 “version”: "1.1"
}

POST /api/1.1/user/login { u: ‘’, p: ‘’ }

Authentication of a user using username and password. Traffic Ops will send back a session cookie.

Authentication Required: No

Request Properties

	Parameter

	Type

	Description

	u

	string

	username

	p

	string

	password

Request Example

 {
 "u": "username",
 "p": "password"
}

Response Content Type: application/json

Response Properties

	Parameter

	Type

	Description

	alerts

	array

	A collection of alert messages.

	>level

	string

	Success, info, warning or error.

	>text

	string

	Alert message.

	version

	string

	

Response Example

{
 "alerts": [
 {
 "level": "success",
 "text": "Successfully logged in."
 }
],
 "version": "1.1"
 }

GET /api/1.1/user/:id/deliveryservices/available.json

Authentication Required: Yes

Request Route Parameters

	Name

	Required

	Description

	id

	yes

	

Response Properties

	Parameter

	Type

	Description

	xmlId

	string

	

	id

	string

	

Response Example

{
 "response": [
 {
 "xmlId": "ns-img",
 "id": "90"
 },
 {
 "xmlId": "ns-img-secure",
 "id": "280"
 }
],
 "version": "1.1"
}

POST /api/1.1/user/login/token

Authentication of a user using a token.

Authentication Required: No

Request Route Properties

	Parameter

	Type

	Description

	t

	string

	token-value

Request Example

{
 "t": "token-value"
}

Response Content Type: application/json

Response Properties

	Parameter

	Type

	Description

	alerts

	array

	

	>level

	string

	

	>text

	string

	

	version

	string

	

Response Example

{
 "alerts": [
 {
 "level": "error",
 "text": "Unauthorized, please log in."
 }
],
 "version": "1.1"
}

POST /api/1.1/user/logout

User logout. Invalidates the session cookie.

Authentication Required: Yes

Response Properties

	Parameter

	Type

	Description

	alerts

	array

	

	
	level

	string

	

	
	text

	string

	

	version

	string

	

Response Example

{
 "alerts": [
 {
 "level": "success",
 "text": "You are logged out."
 }
],
 "version": "1.1"
}

POST /api/1.1/user/reset_password

Reset user password.

Authentication Required: No

Request Properties

	Parameter

	Type

	Description

	email

	string

	The email address of the user to initiate
password reset.

Request Example

{
 "email": "email@email.com"
}

Response Properties

	Parameter

	Type

	Description

	alerts

	array

	A collection of alert messages.

	
	level

	string

	Success, info, warning or error.

	
	text

	string

	Alert message.

	version

	string

	

Response Example

{
 "alerts": [
 {
 "level": "success",
 "text": "Successfully logged in."
 }
],
 "version": "1.1"
}

Traffic Router

Introduction

Traffic Router is a Java Tomcat application that routes clients to the closest available cache on the CDN using both HTTP and DNS. Cache availability is determined by Traffic Monitor; consequently Traffic Router polls Traffic Monitor for its configuration and cache health state information, and uses this data to make routing decisions. HTTP routing is performed by localizing the client based on the request’s source IP address (IPv4 or IPv6), and issues an HTTP 302 redirect to the nearest cache. HTTP routing utilizes consistent hashing on request URLs to optimize cache performance and request distribution. DNS routing is performed by localizing clients, resolvers in most cases, requesting A and AAAA records for a configurable name such as edge.deliveryservice.somecdn.net. Traffic Router is comprised of four separate Maven modules:

	api - Provides a simple JSON interface into certain aspects of core and is deployed as a WAR to a Service (read: connector/listen port) within Tomcat which is separate from core

	connector - A JAR that overrides Tomcat’s standard Http11Protocol Connector class and allows Traffic Router to delay opening listen sockets until it is in a state suitable for routing traffic

	core - Services DNS and HTTP requests, performs localization on routing requests, and is deployed as a WAR to a Service (read: connector/listen port) within Tomcat which is separate from api

	rpm - A simple Maven project which gathers the artifacts from the prior three modules and builds an RPM

Software Requirements

To work on Traffic Router you need a *nix (MacOS and Linux are most commonly used) environment that has the following installed:

	Eclipse >= Kepler SR2 (or another Java IDE)

	Maven >= 3.3.1

	JDK >= 6.0

Traffic Router Project Tree Overview

	traffic_control/traffic_traffic_router/ - base directory for Traffic Router

	api/ - Source code for Traffic Router API, which is built as its own deployable WAR file and communicates with Traffic Router Core using JMX

	src/main - Main source directory for Traffic Router API

	java/ - Java source code for Traffic Router API

	resources/ - Spring resources pulled in during an RPM build

	webapp/ - Java webapp resources

	src/test - Test source directory for Traffic Router API

	java/ - JUnit based unit tests for Traffic Router API

	resources/ - Resources pulled in by unit tests

	connector/ - Source code for Traffic Router Connector;

	src/main/java - Java source directory for Traffic Router Connector

	core/ - Source code for Traffic Router Core, which is built as its own deployable WAR file and communicates with Traffic Router API using JMX

	src/main - Main source directory for Traffic Router Core

	etc/init.d - Init script for Tomcat

	conf/ - Configuration files

	java/ - Java source code for Traffic Router Core

	opt/tomcat/conf - Contains Tomcat configuration file(s) pulled in during an RPM build

	resources/ - Resources pulled in during an RPM build

	scripts/ - Scripts used by the RPM build process

	webapp/ - Java webapp resources

	src/test - Test source directory for Traffic Router Core

	db - Files downloaded by unit tests

	java/ - JUnit based unit tests for Traffic Router Core

	resources/ - Configuration files used by unit tests

	var/auto-zones - BIND formatted zone files generated by Traffic Router Core during unit testing

Java Formatting Conventions

None at this time. The codebase will eventually be formatted per Java standards.

Installing The Developer Environment

To install the Traffic Router Developer environment:

	Clone the traffic_control repository using Git.

	Change directories into traffic_control/traffic_router.

	If you are not running Traffic Monitor locally (http://localhost:8080) from within Eclipse, edit the following parameter in core/src/test/resources/traffic_monitor.properties and point it to an instance, or instances of Traffic Monitor for your chosen CDN:

	Parameter

	Value

	traffic_monitor.bootstrap.hosts

	FQDN and port of the Traffic Monitor instance(s), separated by semicolons as necessary (do not include http://).

	Import the existing git repo into Eclipse:

	File -> Import -> Git -> Projects from Git; Next

	Existing local repository; Next

	Add -> browse to find traffic_control; Open

	Select traffic_control; Next

	Ensure “Import existing projects” is selected, expand traffic_control, select traffic_router; Next

	Ensure traffic_router_api, traffic_router_connector, and traffic_router_core are checked; Finish (this step can take several minutes to complete)

	Ensure traffic_router_api, traffic_router_connector, and traffic_router_core have been opened by Eclipse after importing

	From the terminal, run mvn clean verify from the traffic_router directory

	Start the embedded Jetty instance for Core from within Eclipse

	In the package explorer, expand traffic_router_core

	Expand src/test/java

	Expand the package com.comcast.cdn.traffic_control.traffic_router.core

	Open and run TrafficRouterStart.java

Note

If an error is displayed in the Console, run mvn clean verify from the traffic_router directory

	Traffic Router Core should now be running; the HTTP routing interface is available on http://localhost:8081, while the DNS server and routing interface is available on localhost:1053 via TCP and UDP.

Test Cases

Unit tests can be executed using Maven by running mvn test at the root of the traffic_router project.

API

Traffic Router API

Traffic Router API

/crs/stats

General stats.

/crs/stats/ip/:ipaddress

Geolocation information for an IPv4 or IPv6 address.

/crs/locations

A list of configured cache groups.

/crs/locations/caches

A mapping of caches to cache groups and their current health state.

/crs/locations/:location/caches

A list of caches for this cache group only.

Traffic Monitor

Introduction

Traffic Monitor is a Java Tomcat application that monitors caches, provides health state information to Traffic Router, and collects statistics for use in tools such as Traffic Ops and Traffic Stats. The health state provided by Traffic Monitor is used by Traffic Router to control which caches are available on the CDN.

Software Requirements

To work on Traffic Monitor you need a *nix (MacOS and Linux are most commonly used) environment that has the following installed:

	Eclipse >= Kepler SR2 (or another Java IDE)

	Maven >= 3.3.1

	JDK >= 6.0

Traffic Monitor Project Tree Overview

	traffic_control/traffic_monitor/ - base directory for Traffic Monitor

	etc/ - Miscellaneous simulator utilities

	src/main - Main source directory for the Traffic Monitor

	bin/ - Configuration tools

	conf/ - Configuration files

	java/ - Java source code for Traffic Monitor

	opt/tomcat/conf - Contains Tomcat configuration file(s) pulled in during an RPM build

	resources/ - Resources pulled in during an RPM build

	scripts/ - Scripts used by the RPM build process

	webapp/ - Java webapp resources

	src/test - Test source directory for Traffic Monitor

	java/ - JUnit based unit tests for Traffic Monitor

	resources/conf - Configuration files used by unit tests

	resources/db - Files downloaded by unit tests

	resources/var - Files generated by unit tests

Java Formatting Conventions

None at this time. The codebase will eventually be formatted per Java standards.

Installing The Developer Environment

To install the Traffic Monitor Developer environment:

	Clone the traffic_control repository using Git.

	Change directories into traffic_control/traffic_monitor.

	Edit the following parameters in src/test/resources/conf/traffic_monitor_config.js:

	Parameter

	Value

	tm.hostname

	FQDN of the Traffic Ops instance (do not include http://).

	tm.username

	Admin username for Traffic Ops

	tm.password

	Password for admin user

	cdnName

	Name of the CDN this Traffic Monitor will monitor

	Import the existing git repo into Eclipse:

	File -> Import -> Git -> Projects from Git; Next

	Existing local repository; Next

	Add -> browse to find traffic_control; Add

	Select traffic_control; Next

	Ensure “Import existing projects” is selected, expand traffic_control, select traffic_monitor; Next

	Ensure traffic_monitor is checked; Finish

	Ensure traffic_monitor has been opened by Eclipse after importing

	Run mvn clean verify from the traffic_monitor directory

	Start the embedded Jetty instance from within Eclipse

	In the package explorer, expand traffic_monitor

	Expand src/test/java

	Expand the package com.comcast.cdn.traffic_control.traffic_monitor

	Open and run Start.java

Note

If an error is displayed in the Console, run mvn clean verify from the traffic_monitor directory

	With a web browser, navigate to http://localhost:8080

Test Cases

Unit tests can be executed using Maven by running mvn test at the root of the traffic_monitor project.

API

Traffic Monitor APIs

Traffic Monitor APIs

The Traffic Monitor URLs below allow certain query parameters for use in controlling the data returned. The optional query parameters are the tabbed in values under each URL, if they exist.

/publish/EventLog

Log of recent events.

/publish/CacheStats

Statistics gathered for each cache.

Query Parameters

	Parameter

	Type

	Description

	hc

	int

	The history count, number of items to display.

	stats

	string

	A comma separated list of stats to display.

	wildcard

	boolean

	Controls whether specified stats should be
treated as partial strings.

/publish/CacheStats/:cache

Statistics gathered for only this cache.

Query Parameters

	Parameter

	Type

	Description

	hc

	int

	The history count, number of items to display.

	stats

	string

	A comma separated list of stats to display.

	wildcard

	boolean

	Controls whether specified stats should be
treated as partial strings.

/publish/DsStats

Statistics gathered for delivery services.

Query Parameters

	Parameter

	Type

	Description

	hc

	int

	The history count, number of items to display.

	stats

	string

	A comma separated list of stats to display.

	wildcard

	boolean

	Controls whether specified stats should be
treated as partial strings.

/publish/DsStats/:deliveryService

Statistics gathered for this delivery service only.

Query Parameters

	Parameter

	Type

	Description

	hc

	int

	The history count, number of items to display.

	stats

	string

	A comma separated list of stats to display.

	wildcard

	boolean

	Controls whether specified stats should be
treated as partial strings.

/publish/CrStates

The current state of this CDN per the health protocol.

raw

The current state of this CDN per this Traffic Monitor only.

/publish/CrConfig

The CrConfig served to and consumed by Traffic Router.

/publish/PeerStates

The health state information from all peer Traffic Monitors.

Query Parameters

	Parameter

	Type

	Description

	hc

	int

	The history count, number of items to display.

	stats

	string

	A comma separated list of stats to display.

	wildcard

	boolean

	Controls whether specified stats should be
treated as partial strings.

/publish/Stats

The general statistics about Traffic Monitor.

/publish/StatSummary

The summary of cache statistics.

Query Parameters

	Parameter

	Type

	Description

	startTime

	number

	Window start. The number of milliseconds since the epoch.

	endTime

	number

	Window end. The number of milliseconds since the epoch.

	hc

	int

	The history count, number of items to display.

	stats

	string

	A comma separated list of stats to display.

	wildcard

	boolean

	Controls whether specified stats should be
treated as partial strings.

	cache

	string

	Summary statistics for just this cache.

/publish/ConfigDoc

The overview of configuration options.

Traffic Stats

Introduction

Traffic Stats is a …

Software Requirements

To work on Traffic Stats you need a *nix (MacOS and Linux are most commonly used) environment that has the following installed:

	?

Traffic Stats Project Tree Overview

Go Formatting Conventions

Installing The Developer Environment

To install the Traffic Ops Developer environment:

	Clone the traffic_control repository using Git.

Test Cases

The test harness …

Traffic Server

See the Apache Traffic Server documentation [https://docs.trafficserver.apache.org/en/latest/index.html].

FAQ

Table of Contents:

	General
	Who is using Traffic Control?

	What is Rascal?

	What is the CCR?

	What is Twelve Monkeys?

	Development
	How can I become involved?

	Running a Traffic Control CDN
	Why is my CRConfig.json rejected?

General

Who is using Traffic Control?

	Comcast Cable [http://www.comcast.com/]

	Comcast is the original developer or Traffic Control and is using it for all it’s video delivery to so-called ‘second screen applications’ (PCs, tablets, phones), but also for delivering images and software to it’s X1 platform, and other applications. The Traffic Control CDN at Comcast serves more than a peta byte of content a day.

	Cox Communications [http://www.cox.com/]

	.

What is Rascal?

Rascal was the original name for Traffic Monitor. You will sometimes still see this name in the source, or in older documents.

What is the CCR?

Comcast Content Router was the original name for Traffic Router. You will sometimes still see this name in the source, or in older documents.

What is Twelve Monkeys?

Twelve Monkeys was the the original name for Traffic Ops. You will sometimes still see this name in the source, or in older documents. It’s also a good movie.

Development

How can I become involved?

Running a Traffic Control CDN

Why is my CRConfig.json rejected?

Especially in version 1.1.0, there’s a number of manual steps that need to be done after the initial install. Make sure that after the initial install, you perform these steps in order:

Note

Even though Traffic Ops allows you to enter the servers with no IPv6 address information, the CRConfig will not be accepted by Traffic Router without IPv6 address information for at least Traffic Router and Traffic Monitor. Traffic Control assumes in a lot of places that all servers have at least an IPv4 and an IPv6 address. If you are not using IPv6, it is best to enter dummy addresses for all server types, and turn IPv6 off in all delivery services. (https://github.com/Comcast/traffic_control/issues/44).

	
	Add users

	Not necessarily needed for getting your CRConfig accepted, but always a good idea.

	
	Add Divisions

	You will need at least one.

	
	Add Regions

	You will need at least one.

	
	Add Physical Locations

	You will need at least one.

	
	Add Mid tier Cache Groups

	You will need at least one.

	
	Add Edge tier Cache Groups

	
You will need at least one. After creating the edge cache group, go to Parameters > All Profiles, type CDN_Name in the search box, and click “Edit” for any row of this parameter. Then in the Parameter detail view, click the Add Cachegroup button, select your newly created cachegroup, and click Save.

add CDN_Name parameter

	
	Add Traffic Monitors

	You will need to enter at least one Traffic Monitor - make sure to change the server status to ONLINE.

	
	Add Traffic Routers

	You will need to enter at least one Traffic Router - make sure to change the server status to ONLINE.

	
	Add Edges

	You will need at least one edge cache to make Traffic Router accept the CRConfig.

	
	Add Mid

	Technically you don’t need a mid tier, but if you have one, best to enter the info before continuing.

	
	Change the polling.url parameters to reflect your CDN

	Set where to get the coverage zone map, and the geo IP database.

	
	Create at least one delivery service, and assign at least one edge cache in REPORTED state to it.

	Even if it is a dummy DS, without a single DS, the CRConfig will not be accepted by Traffic Router.

	
	Snapshot CRConfig

	Tools > Snapshot CRConfig diff, and write.

Now you are ready to install the sw on Traffic Monitor and then Traffic Router.

Glossary

	302 content routing

	 HTTP Content Routing.

	astats (stats_over_http)

	An ATS plugin that allows you to monitor vitals of the ATS server. See Cache Monitoring.

	cache

	A caching proxy server. See Caching Proxies.

	cachegroup

	A group of caches that together create a combined larger cache using consistent hashing. See Cache Group.

	consistent hashing

	See the Wikipedia article [http://en.wikipedia.org/wiki/Consistent_hashing]; Traffic Control uses consistent hashing when using HTTP Content Routing for the edge tier and when selecting parents in the mid tier.

	content routing

	Directing clients (or client systems) to a particular location or device in a location for optimal delivery of content See also HTTP Content Routing and DNS Content Routing.

	coverage zone map

	The coverage zone map (czm) or coverage zone file (zcf) is a file that maps network prefixes to cachegroups. See Localization.

	delivery service

	A grouping of content in the CDN, usually a determined by the URL hostname. See Delivery Service.

	edge (tier or cache)

	Closest to the client or end-user. The edge tier is the tier that serves the client, edge caches are caches in the edge tier. In a Traffic Control CDN the basic function of the edge cache is that of a Reverse Proxy. See also Cache Group.

	(traffic ops) extension

	Using extensions, Traffic Ops be extended to use proprietary checks or monitoring sources. See Traffic Ops Extension.

	forward proxy

	A proxy that works that acts like it is the client to the origin. See Forward Proxy.

	geo localization or geo routing

	Localizing clients to the nearest caches using a geo database like the one from Maxmind.

	health protocol

	The protocol to monitor the health of all the caches. See Health Protocol.

	localization

	Finding location on the network, or on planet earth. See Localization.

	mid (tier or cache)

	The tier above the edge tier. The mid tier does not directly serves the end-user and is used as an additional layer between the edge and the origin. In a Traffic Control CDN the basic function of the mid cache is that of a Forward Proxy. See also Cache Group.

	origin

	The source of content for the CDN. Usually a redundant HTTP/1.1 webserver.

	parent (cache or cachegroup)

	The (group of) cache(s) in the higher tier. See Cache Group.

	profile

	A group of settings (parameters) that will be applied to a server. See Profile.

	reverse proxy

	A proxy that acts like it is the origin to the client. See Reverse Proxy.

Index

 Symbols
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | O
 | P
 | Q
 | R
 | S
 | T

Symbols

 	
 	(traffic ops) extension

 	
 	302 content routing

A

 	
 	astats (stats_over_http)

B

 	
 	Bulk Upload Server

C

 	
 	cache

 	Cache Control Header

 	Cache Updates

 	cachegroup

 	CCR Profile

 	CDN

 	
 	Change Log

 	consistent hashing

 	Content Delivery Network

 	Content Routing

 	content routing

 	coverage zone map

D

 	
 	delivery service

 	
 	Delivery Service regexp

 	Delivery Service Type

E

 	
 	edge (tier or cache)

 	
 	Edge Health

F

 	
 	Forward Proxy

 	
 	forward proxy

G

 	
 	Generate ISO

 	
 	geo localization or geo routing

 	Global Profile

H

 	
 	Header Rewrite

 	HEADER_REGEXP

 	Health

 	health protocol

 	
 	Health Tab

 	HOST_REGEXP

 	HTTP

 	HTTP 304

 	http/1.1

I

 	
 	Invalidate Content

 	
 	ISO

L

 	
 	localization

 	
 	Log File Analysis

M

 	
 	mid (tier or cache)

O

 	
 	origin

P

 	
 	parent (cache or cachegroup)

 	PATH_REGEXP

 	
 	profile

 	Purge

Q

 	
 	Queue Updates

R

 	
 	Revalidation

 	
 	Reverse Proxy

 	reverse proxy

S

 	
 	Server Assignments

 	Signed URLs

 	
 	Snapshot CRConfig

 	Static DNS Entries

T

 	
 	Token Based Authentication

 	Traffic Monitor - Overview

 	Traffic Ops - Installing

 	
 	Traffic Portal - Overview

 	Traffic Router - Overview

 	Traffic Router Profile

 	Transparent Proxy

 _images/graph.png

_images/info.png

_images/good.png

_images/good1.png

_static/comment-bright.png

_images/traffic_control_overview_3.png
Customer. Content Delivery Network

.| o]

Operator
Admin
Console

HrTes

REST

‘Admin
Console]
[Hrres
Lags from all
components

) ()
REET. Statistics Long
DNS’ CLED Term

s |

Resolver

REST REST
Long Térm
Stats Gatoway

oNs

astats
pol

/

InfluxDB

HTTP

e “lonmiss)

Client

i

_static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

_images/clock-black.png

_images/fwda.png

_images/bad1.png

_images/cache_groups_1.png
Origin Server

MID Cache Group: East

MID Cache Group: West

FlEma-east

FTEma-east

:
E

STETAwest

STETawest

STETAWest

03

Semd-east.
06

3

[
SEmdwest

02
SEmdwest

Semd-east.

Semd-east

S-St

06

05

04

EDGE Cache Group: New York City

[asenyeor | [asenyooz | [asenyean

[asonyeos | [asenyoos | [asenycon

EDGE Cache Group: Houston

atse-nou-01 | | atse-nou-02 | | atse-nou-08

EDGE Cache Group: Philadelphia

atse-phl-01

atse-phl-02 | | atse-phl-03

EDGE Cache Group: Chicago

atse-chi-01

atse-chi-02

EDGE Cache Group: Denver

atse-den-01 | | atse-den-02 | | atse-den-03

EDGE Cache Group: Los Angelos.

Chiclient

atse-lax01

atsedax02 | [atse-lax-03

LAcient

_images/fwda1.png

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		
 Traffic Control

 		
 CDN Basics

 		
 Content Delivery Networks

 		
 HTTP 1.1

 		
 Caching Proxies

 		
 Reverse Proxy

 		
 Forward Proxy

 		
 Transparent Proxy

 		
 Cache Control Headers and Revalidation

 		
 Traffic Control Overview

 		
 Introduction

 		
 Traffic Ops

 		
 Traffic Ops Extension

 		
 Traffic Router

 		
 Delivery Service

 		
 Localization

 		
 DNS Content Routing

 		
 HTTP Content Routing

 		
 Traffic Monitor

 		
 Cache Monitoring

 		
 Health Protocol

 		
 Traffic Stats

 		
 Traffic Portal

 		
 Traffic Server

 		
 Cache Group

 		
 Profile

 		
 Traffic Vault

 		
 Administrator’s Guide

 		
 Installing Traffic Ops

 		
 System Requirements

 		
 Navigating the Install

 		
 Configuring Traffic Ops

 		
 Installing the SSL Cert

 		
 Content Delivery Networks

 		
 Parameters an profiles

 		
 Regions, Locations and Cache Groups

 		
 Using Traffic Ops

 		
 The Traffic Ops Menu

 		
 Health

 		
 Server

 		
 Delivery Service

 		
 Parameters and Profiles

 		
 Tools

 		
 Invalidate Content

 		
 Generate DNSSEC Keys

 		
 Managing Traffic Ops Extensions

 		
 Traffic Monitor Administration

 		
 Installing Traffic Monitor

 		
 Configuring Traffic Monitor

 		
 Troubleshooting and log files

 		
 Traffic Router Administration

 		
 Installing Traffic Router

 		
 Configuring Traffic Router

 		
 Troubleshooting and log files

 		
 Traffic Stats Administration

 		
 Installing Traffic Stats

 		
 Configuring Traffic Stats

 		
 Traffic Server Administration

 		
 Installing Traffic Server

 		
 Configuring Traffic Server

 		
 Traffic Vault Administration

 		
 Installing Traffic Vault

 		
 Configuring Traffic Vault

 		
 Developer’s Guide

 		
 Traffic Ops

 		
 Introduction

 		
 Software Requirements

 		
 Traffic Ops Project Tree Overview

 		
 Perl Formatting Conventions

 		
 Database Management

 		
 Installing The Developer Environment

 		
 Test Cases

 		
 Extensions

 		
 API

 		
 Traffic Router

 		
 Introduction

 		
 Software Requirements

 		
 Traffic Router Project Tree Overview

 		
 Java Formatting Conventions

 		
 Installing The Developer Environment

 		
 Test Cases

 		
 API

 		
 Traffic Monitor

 		
 Introduction

 		
 Software Requirements

 		
 Traffic Monitor Project Tree Overview

 		
 Java Formatting Conventions

 		
 Installing The Developer Environment

 		
 Test Cases

 		
 API

 		
 Traffic Stats

 		
 Introduction

 		
 Software Requirements

 		
 Traffic Stats Project Tree Overview

 		
 Go Formatting Conventions

 		
 Installing The Developer Environment

 		
 Test Cases

 		
 Traffic Server

 		
 FAQ

 		
 General

 		
 Who is using Traffic Control?

 		
 What is Rascal?

 		
 What is the CCR?

 		
 What is Twelve Monkeys?

 		
 Development

 		
 How can I become involved?

 		
 Running a Traffic Control CDN

 		
 Why is my CRConfig.json rejected?

 		
 Glossary

_images/12m.png
Health Delivery Services Servers Parameters Tools Misc Change Log Help uTC: 16:55:09

_static/file.png

_images/bad.png

_static/minus.png

_static/down.png

_static/tc_logo.png
TRAFFIC
GCONTROL

_static/plus.png

_static/up-pressed.png

_static/up.png

